商科代写|商业数学代写business mathematics代考|OPMT1110

如果你也在 怎样代写商业数学business mathematics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

商业数学是商业企业用来记录和管理商业运作的数学。商业组织将数学用于会计、库存管理、市场营销、销售预测和财务分析。

statistics-lab™ 为您的留学生涯保驾护航 在代写商业数学business mathematics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写商业数学business mathematics代写方面经验极为丰富,各种代写商业数学business mathematics相关的作业也就用不着说。

我们提供的商业数学business mathematics及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
商科代写|商业数学代写business mathematics代考|OPMT1110

商科代写|商业数学代写business mathematics代考|Overview and Process of Mathematical Modeling

Bender (2000, pp. 1-8) first introduced a process for modeling. He highlighted the following: formulate the model, outline the model, ask if it is useful, and test the model. Others have expanded this simple outlined process. Giordano et al. (2014, p. 64) presented a six-step process: identify the problem to be solved, make assumptions, solve the model, verify the model, implement the model, and maintain the model. Myer (2004, pp. 13-15) suggested some guidelines for modeling, including formulation, mathematical manipulation, and evaluation. Meerschaert (1999) developed a five-step process: ask the question, select the modeling approach, formulate the model, solve the model, and answer the question. Albright (2010) subscribed mostly to concepts and process described in previous editions of Giordano et al. (2014). Fox (2012, pp. 21-22) suggested an eight-step approach: understand the problem or question, make simplifying assumptions, define all variables, construct the model, solve and interpret the model, verify the model, consider the model’s strengths and weaknesses, and implement the model.
Most of these pioneers in modeling have suggested similar starts in understanding the problem or question to be answered and in making key assumptions to help enable the model to be built. We add the need for sensitivity analysis and model testing in this process to help ensure that we have a model that is performing correctly to answer the appropriate questions.

For example, student teams in the Mathematical Contest in Modeling were building models to determine the all-time best college sports coach. One team picked a coach who coached less than a year, went undefeated for the remaining part of the year, and won their bowl game. Thus, his season was a perfect season. Their algorithm picked this person as the all-time best coach. Sensitivity analysis and model testing could have shown the fallacy to their model.

Someplace between the defining of the variables and the assumptions, we begin to consider the model’s form and technique that might be used to solve the model. The list of techniques is boundless in mathematics, and we will not list them here. Suffice it to say that it might be good to initially decide among the forms: deterministic or stochastic for the model, linear or nonlinear for the relationship of the variables, and continuous or discrete.

商科代写|商业数学代写business mathematics代考|The Modeling Process

We introduce the process of modeling and examine many different scenarios in which mathematical modeling can play a role.

The art of mathematical modcling is learned through expericnce of building and solving models. Modelers must be creative, innovative, inquisitive, and willing to try new techniques as well as being able to refine their models, if necessary. A major step in the process is passing the common sense test for use of the model.
In its basic form, modeling consists of three steps:

  1. Make assumptions
  2. Do some math
  3. Derive and interpret conclusions
    To that end, one cannot question the mathematics and its solution, but one can always question the assumptions used.

To gain insight, we will consider one framework that will enable the modeler to address the largest number of problems. The key is that there is something changing for which we want to know the effects and the results of the effects. The problem might involve any system under analysis. The realworld system can be very simplistic or very complicated. This requires both types of real-world systems to be modeled with the same logical stepwise process.

Consider modeling an investment. Our first inclination is to use the equations about compound interest rates that we used in high school or college algebra. The compound interest formula calculates the value of a compound interest investment after ” $n$ ” interest periods.
$$
A=P(1-i)^{n}
$$

where:
$A$ is the amount after $n$ interest periods
$P$ is the principal, the amount invested at the start $i$ is the interest rate applying to each period $n$ is the number of interest periods

商科代写|商业数学代写business mathematics代考|OPMT1110

商业数学代考

商科代写|商业数学代写business mathematics代考|Overview and Process of Mathematical Modeling

Bender (2000, pp. 1-8) 首先介绍了一种建模过程。他强调了以下几点:制定模型、概述模型、询问它是否有用以及测试模型。其他人已经扩展了这个简单的概述过程。佐丹奴等人。(2014, p. 64) 提出了一个六步过程:识别要解决的问题、做出假设、解决模型、验证模型、实施模型和维护模型。Myer (2004, pp. 13-15) 提出了一些建模指南,包括公式化、数学操作和评估。Meerschaert (1999) 制定了一个五步流程:提出问题、选择建模方法、制定模型、解决模型和回答问题。Albright (2010) 主要赞同 Giordano 等人先前版本中描述的概念和过程。(2014)。福克斯(2012 年,第
这些建模先驱中的大多数都建议在理解要回答的问题或问题以及做出关键假设以帮助建立模型方面采取类似的开始。我们在此过程中增加了对敏感性分析和模型测试的需求,以帮助确保我们有一个正确执行的模型来回答适当的问题。

例如,建模数学竞赛的学生团队正在构建模型以确定有史以来最好的大学体育教练。一支球队挑选了一位执教不到一年的教练,在这一年的剩余时间里保持不败,并赢得了他们的碗赛。因此,他的赛季是一个完美的赛季。他们的算法将这个人选为有史以来最好的教练。敏感性分析和模型测试可能表明他们的模型存在谬误。

在变量定义和假设之间的某个地方,我们开始考虑模型的形式和可能用于求解模型的技术。在数学中,技术的清单是无穷无尽的,我们在这里就不一一列举了。可以说,最初在以下形式中做出决定可能会很好:模型的确定性或随机性,变量关系的线性或非线性,以及连续或离散。

商科代写|商业数学代写business mathematics代考|The Modeling Process

我们介绍了建模过程并研究了数学建模可以发挥作用的许多不同场景。

数学建模的艺术是通过建立和求解模型的经验来学习的。建模者必须具有创造性、创新性、好奇心,并且愿意尝试新技术,并且能够在必要时改进他们的模型。该过程的一个主要步骤是通过使用模型的常识测试。
在其基本形式中,建模包括三个步骤:

  1. 做出假设
  2. 做一些数学
  3. 推导和解释结论
    为此,人们不能质疑数学及其解决方案,但人们总是可以质疑所使用的假设。

为了获得洞察力,我们将考虑一个框架,该框架将使建模者能够解决最多的问题。关键是有一些变化我们想知道效果和效果的结果。问题可能涉及正在分析的任何系统。现实世界的系统可能非常简单或非常复杂。这需要使用相同的逻辑逐步过程对两种类型的现实世界系统进行建模。

考虑为投资建模。我们的第一个倾向是使用我们在高中或大学代数中使用的关于复利的方程。复利公式计算复利投资的价值后”n”利息期。

一个=磷(1−一世)n

在哪里:
一个是之后的金额n利息期
磷是本金,开始时投入的金额一世是适用于每个时期的利率n是利息期数

商科代写|商业数学代写business mathematics代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。