商科代写|计量经济学代写Econometrics代考|Find 2022

如果你也在 怎样代写计量经济学Econometrics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

计量经济学,对经济关系的统计和数学分析,通常作为经济预测的基础。这种信息有时被政府用来制定经济政策,也被私人企业用来帮助价格、库存和生产方面的决策。

statistics-lab™ 为您的留学生涯保驾护航 在代写计量经济学Econometrics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写计量经济学Econometrics代写方面经验极为丰富,各种代写计量经济学Econometrics相关的作业也就用不着说。

我们提供的计量经济学Econometrics及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
商科代写|计量经济学代写Econometrics代考|Find 2022

商科代写|计量经济学代写Econometrics代考|CAUSES OF SERIAL CORRELATION

Consider a regression equation of the standard form $Y_{t}=\beta X_{t}+u_{t}$. We assume a model in mean deviation form to simplify the notation and the discussion. The errors of this model are said to be serially correlated if $E\left(u_{t} u_{t-k}\right) \neq 0$ for some $k \neq 0$. A natural question is why the errors might be correlated in this way? For the moment, we will simply assume that this is an intrinsic property of the data. That is, we assume that shocks to the equation are not random drawings from a distribution but instead depend upon their own past values. An alternative would be to assume that correlation in the errors arises because the model is misspecified in some way. However, this would complicate much of the discussion and we will avoid this assumption for the moment, on the understanding that it will be relaxed later.

There are many different forms that serial correlation might take. For example, the errors might follow a first-order autoregressive (AR) process. This would mean that the error process could be described by an equation of the form $u_{t}=\rho u_{t-1}+\varepsilon_{t}$, where $\varepsilon_{t}$, is a truly random disturbance and $\rho \neq 0$. This is a very common and important case, but it is not the only form that serial correlation can take. An alternative is where the error term in the equation is an average over several time periods of the random disturbance $\varepsilon_{t}$. For example, we might have a first-order moving average process of the form $u_{t}=\varepsilon_{t}+\lambda \varepsilon_{t-1}$. Both error processes are said to be serially correlated but each produces different implications and problems for the modeler. However, in both cases, the problem of dealing with serial correlation is simplified because of the assumption that it is an intrinsic feature of the error themselves, that is, the problem is one of error dynamics. A more realistic conclusion might be that the errors are serially correlated because of some fundamental misspecification in the original equation.

商科代写|计量经济学代写Econometrics代考|CONSEQUENCES OF SERIAL CORRELATION

Now that we have established some of the reasons why serial correlation may arise in regression models, let us consider the implications for least squares regression analysis. Suppose we have a model in which the errors follow a first-order AR process as set out in (5.6)
$$
\begin{aligned}
&Y_{t}=\beta X_{t}+u_{t} \
&u_{t}=\rho u_{t-1}+\varepsilon_{t},
\end{aligned}
$$
where $\varepsilon_{t}, t=1, \ldots, T$ are independent, identically distributed random disturbances with mean zero and constant variance. As we have seen, this is not the only possible type of serial correlation which may arise, but the results we derive for this model apply more generally to other forms of serial correlation.

The AR process defined in (5.6) can be written in moving average form. Using the method of backward substitution, we have
$$
u_{t}=\varepsilon_{t}+\rho \varepsilon_{t-1}+\rho^{2} \varepsilon_{t-2} \ldots=\sum_{j=0}^{\infty} \rho^{j} \varepsilon_{t-j} .
$$
This is an infinite moving average process. Providing $|\rho|<1$, then the sequence defined in (5.7) will converge, in the sense that it will have a finite variance. To see this note that
$$
E\left(u_{t}^{2}\right)=\sum_{j=0}^{\infty} \rho^{2 j} E\left(\varepsilon_{t-j}^{2}\right)=\sum_{j=0}^{\mu_{j}} \rho^{2 j} \sigma_{\varepsilon}^{2}=\frac{\sigma_{\varepsilon}^{2}}{1-\rho^{2}}
$$
Therefore, for the variance of the error term to be finite and positive, we need $|\rho|<1$. If this condition holds, then the process is said to be weakly stationary and it can be shown that a general feature of stationary, finite AR processes is that they can be written as infinite moving average processes. Moreover, since $E\left(\varepsilon_{t-j}\right)=0$ for all values of $j$, it follows that $E\left(u_{t}\right)=0$. This is a useful property because we have already seen that the expected value of the OLS estimator can be written as follows: $E(\hat{\beta})=\beta+\sum_{t=1}^{T} X_{t} E\left(u_{t}\right) / \sum_{t=1}^{T} X_{t}^{2}$. It therefore follows that $E(\hat{\beta})=\beta$ and that the OLS estimator is unbiased even when the errors are serially correlated.

商科代写|计量经济学代写Econometrics代考|Find 2022

计量经济学代考

商科代写|计量经济学代写Econometrics代考|CAUSES OF SERIAL CORRELATION

考虑标准形式的回归方程 $Y_{t}=\beta X_{t}+u_{t}$. 我们假设一个平均偏差形式的模型来简化符号和讨论。该模型的误差 被称为序列相关,如果 $E\left(u_{t} u_{t-k}\right) \neq 0$ 对于一些 $k \neq 0$. 一个自然的问题是,为什么错误可能以这种方式相关? 目前,我们将简单地假设这是数据的内在属性。也就是说,我们假设对方程的冲击不是从分布中随机抽取的,而 是取决于它们自己过去的值。另一种方法是假设由于模型以某种方式错误指定而出现错误相关性。然而,这会使 大部分讨论复杂化,我们暂时避免这种假设,但理解它稍后会放宽。
序列相关可能采用许多不同的形式。例如,错误可能遵循一阶自回归 (AR) 过程。这意味着错误过程可以用以下形 式的方程来描述 $u_{t}=\rho u_{t-1}+\varepsilon_{t}$ , 在哪里 $\varepsilon_{t}$ ,是一个真正的随机干扰并且 $\rho \neq 0$. 这是一个非常常见且重要的案 例,但它并不是序列相关可以采取的唯一形式。另一种方法是方程中的误差项是随机扰动的几个时间段的平均值 $\varepsilon_{t}$. 例如,我们可能有如下形式的一阶移动平均过程 $u_{t}=\varepsilon_{t}+\lambda \varepsilon_{t-1}$. 据说这两个错误过程是串行相关的,但每 个过程都会对建模者产生不同的影响和问题。然而,在这两种情况下,处理序列相关的问题都被简化了,因为假 设它是误差本身的内在特征,即问题是误差动态问题之一。一个更现实的结论可能是,由于原始方程中的一些基 本错误指定,这些误差是序列相关的。

商科代写|计量经济学代写Econometrics代考|CONSEQUENCES OF SERIAL CORRELATION

现在我们已经确定了回归模型中可能出现序列相关的一些原因,让我们考虑最小二乘回归分析的含义。假设我们 有一个模型,其中误差遵循 (5.6) 中所述的一阶 AR 过程
$$
Y_{t}=\beta X_{t}+u_{t} \quad u_{t}=\rho u_{t-1}+\varepsilon_{t},
$$
在哪里 $\varepsilon_{t}, t=1, \ldots, T$ 是独立的、同分布的随机扰动,均值为 0 ,方差为常数。正如我们所看到的,这不是唯 一可能出现的序列相关类型,但我们为该模型得出的结果更普遍地适用于其他形式的序列相关。
(5.6) 中定义的 AR 过程可以写成移动平均形式。使用向后替换的方法,我们有
$$
u_{t}=\varepsilon_{t}+\rho \varepsilon_{t-1}+\rho^{2} \varepsilon_{t-2} \ldots=\sum_{j=0}^{\infty} \rho^{j} \varepsilon_{t-j} .
$$
这是一个无限移动平均过程。提供 $|\rho|<1$ ,那么 (5.7) 中定义的序列将收敛,在某种意义上它将具有有限方 差。看到这个注意
$$
E\left(u_{t}^{2}\right)=\sum_{j=0}^{\infty} \rho^{2 j} E\left(\varepsilon_{t-j}^{2}\right)=\sum_{j=0}^{\mu_{j}} \rho^{2 j} \sigma_{\varepsilon}^{2}=\frac{\sigma_{\varepsilon}^{2}}{1-\rho^{2}}
$$
因此,为了使误差项的方差是有限且为正的,我们需要 $|\rho|<1$. 如果这个条件成立,则称该过程是弱平稳的,并 且可以证明平稳的有限 AR 过程的一般特征是它们可以写成无限移动平均过程。此外,由于 $E\left(\varepsilon_{t-j}\right)=0$ 对于所 有值 $j$ ,它遵循 $E\left(u_{t}\right)=0$. 这是一个有用的属性,因为我们已经看到 OLS 估计量的期望值可以写成如下: $E(\hat{\beta})=\beta+\sum_{t=1}^{T} X_{t} E\left(u_{t}\right) / \sum_{t=1}^{T} X_{t}^{2}$. 因此可以得出 $E(\hat{\beta})=\beta$ 并且即使误差是序列相关的, OLS 估计 量也是无偏的。

商科代写|计量经济学代写Econometrics代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。