### 数学代写|交换代数代写commutative algebra代考|MTH 7059

statistics-lab™ 为您的留学生涯保驾护航 在代写交换代数commutative algebra方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写交换代数commutative algebra代写方面经验极为丰富，各种代写交换代数commutative algebra相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 数学代写|交换代数代写commutative algebra代考|The Artin-Rees Lemma

We will prove the Artin-Rees Lemma in order to derive Krull’s Intersection Theorem from it. The latter in turn is a basic ingredient needed for characterizing the Krull dimension of Noetherian rings in Section 2.4.

Lemma 1 (Artin-Rees Lemma). Let $R$ be a Noetherian ring, $\mathfrak{a} \subset R$ an ideal, $M$ a finitely generated $R$-module, and $M^{\prime} \subset M$ a submodule. Then there exists an integer $k \in \mathbb{N}$ such that
$$\left(\mathfrak{a}^{i} M\right) \cap M^{\prime}=\mathfrak{a}^{i-k}\left(\mathfrak{a}^{k} M \cap M^{\prime}\right)$$
for all exponents $i \geq k$.
Postponing the proof for a while, let us give some explanations concerning this lemma. The descending sequence of ideals $\mathfrak{a}^{1} \supset \mathfrak{a}^{2} \supset \ldots$ defines a topology on $R$, the so-called a-adic topology; see $6.1 / 3$ for the definition of a topology. Indeed, a subset $E \subset R$ is called open if for every element $x \in E$ there exists an exponent $i \in \mathbb{N}$ such that $x+\mathfrak{a}^{i} \subset E$. Thus, the powers $\mathfrak{a}^{i}$ for $i \in \mathbb{N}$ are the basic open neighborhoods of the zero element in $R$. In a similar way, one defines the $\mathfrak{a}$-adic topology on any $R$-module $M$ by taking the submodules $\mathfrak{a}^{i} M$ for $i \in \mathbb{N}$ as basic open neighborhoods of $0 \in M$. Now if $M^{\prime}$ is a submodule of $M$, we may restrict the a-adic topology on $M$ to a topology on $M^{\prime}$ by taking the intersections $\mathfrak{a}^{i} M \cap M^{\prime}$ as basic open neighborhoods of $0 \in M^{\prime}$. Thus, a subset $E \subset M^{\prime}$ is open if and only if for every $x \in E$ there exists an exponent $i \in \mathbb{N}$ such that $x+\left(\mathfrak{a}^{i} M \cap M^{\prime}\right) \subset E$

However, on $M^{\prime}$ the a-adic topology exists as well and we may try to compare both topologies. Clearly, since $\mathfrak{a}^{i} M^{\prime} \subset \mathfrak{a}^{i} M \cap M^{\prime}$, any subset $E \subset M^{\prime}$ that is open with respect to the restriction of the a-adic topology on $M$ to $M^{\prime}$ will be open with respect to the a-adic topology on $M^{\prime}$. Moreover, in the situation of the Artin-Rees Lemma, both topologies coincide, as follows from the inclusions
$$\left(\mathfrak{a}^{i} M\right) \cap M^{\prime}=\mathfrak{a}^{i-k}\left(\mathfrak{a}^{k} M \cap M^{\prime}\right) \subset \mathfrak{a}^{i-k} M^{\prime}$$
for $i \geq k$.

## 数学代写|交换代数代写commutative algebra代考|Krull Dimension

In order to define the dimension of a ring $R$, we use strictly ascending chains $\mathfrak{p}{0} \subsetneq \mathfrak{p}{1} \subsetneq \ldots \subsetneq \mathfrak{p}{n}$ of prime ideals in $R$, where the integer $n$ is referred to as the length of the chain. Remark 1. Let $R$ be a ring and $\mathfrak{p} \subset R$ a prime ideal. Then: (i) The chains of prime ideals in $R$ starting with $\mathfrak{p}$ correspond bijectively to the chains of prime ideals in $R / \mathfrak{p}$ starting with the zero ideal. (ii) The chains of prime ideals in $R$ ending with $\mathfrak{p}$ correspond bijectively to the chains of prime ideals in the localization $R{\mathfrak{p}}$ ending with $\mathfrak{p} R_{\mathfrak{p}}$.
Proof. Assertion (i) is trivial, whereas (ii) follows from $1.2 / 5$.
$$\mathfrak{p}{0} \subsetneq \mathfrak{p}{1} \subsetneq \ldots \subseteq \mathfrak{p}{n},$$ where the $\mathfrak{p}{i}$ are prime ideals in $R$, is denoted by $\operatorname{dim} R$ and called the Krull dimension or simply the dimension of $R$.

For example, fields are of dimension 0, whereas a principal ideal domain is of dimension 1, provided it is not a field. In particular, we have $\operatorname{dim} \mathbb{Z}=1$, as well as $\operatorname{dim} K[X]=1$ for the polynomial ring over a field $K$. Also we know that $\operatorname{dim} K\left\lfloor X_{1}, \ldots, X_{n}\right\rfloor \geq n$, since the polynomial ring $K\left\lfloor X_{1}, \ldots, X_{n}\right\rfloor$ contains the chain of prime ideals $0 \subsetneq\left(X_{1}\right) \subsetneq\left(X_{1}, X_{2}\right) \subsetneq \ldots \subsetneq\left(X_{1}, \ldots, X_{n}\right)$. In fact, we will show $\operatorname{dim} K\left[X_{1}, \ldots, X_{n}\right]=n$ in Corollary 16 below. Likewise, the polynomial ring $K\left[X_{1}, X_{2}, \ldots\right]$ in an infinite sequence of variables is of infinite dimension, whereas the zero ring 0 is a ring having dimension $-\infty$ since, by convention, the supremum over an empty subset of $\mathbb{N}$ is $-\infty$. Any non-zero ring contains at least one prime ideal and therefore is of dimension $\geq 0$.

## 数学代写|交换代数代写commutative algebra代考|Background and Overview

Recall that an extension of fields $K \subset L$ is called algebraic if each element $x \in L$ satisfies an algebraic equation over $K$, i.e. an equation of type
$$x^{n}+a_{1} x^{n-1}+\ldots+a_{n}=0$$
for suitable coefficients $a_{i} \in K$. Replacing $K \longrightarrow L$ by an arbitrary (not necessarily injective) ring homomorphism $\varphi: R \longrightarrow R^{\prime}$, equations of the just mentioned type are still meaningful; they are referred to as integral equations. Furthermore, $R^{\prime}$ is said to be integral over $R$ (via $\varphi$ ) if every element $x \in R^{\prime}$ satisfies an integral equation over $R$.

The fact that any finite extension of fields is algebraic, is fundamental in field theory. In $3.1 / 5$ we will generalize this result to ring extensions and show that any ring homomorphism $\varphi: R \longrightarrow R^{\prime}$ which is finite in the sense that it equips $R^{\prime}$ with the structure of a finite $R$-module, is integral. We obtain this assertion from a quite general characterization of integral dependence in terms of a module setting; see Lemma 3.1/4. The proof is based on Cramer’s rule and is much more laborious than in the field case.

To give a simple example illustrating a basic application of Lemma 3.1/4, consider the polynomial ring $R[X]$ in one variable $X$ over a non-zero ring $R$ and fix a monic polynomial
$$f=X^{n}+a_{1} X^{n-1}+\ldots+a_{n} \in R[X]$$
with coefficients $a_{i} \in R$. For a second variable $Y$ look at the canonical morphism
$$\varphi: R[Y] \longrightarrow R[X], \quad Y \longmapsto f .$$
We claim that $\varphi$ is finite and, hence, integral. Of course, the equation
$$X^{n}+a_{1} X^{n-1}+\ldots+\left(a_{n}-\varphi(Y)\right)=0$$
shows that $X$ is integral over $R[Y]$. From this we conclude by induction that the $R[Y]$-submodule generated by $X^{0}, \ldots, X^{n-1}$ in $R[X]$ contains all powers of $X$ and, hence, coincides with $R[X]$. In other words, $\varphi$ is finite. Alternatively,we could have derived this fact directly from $3.1 / 4$ (ii). Furthermore, using $3.1 / 4$ (iii) or $3.1 / 5$, it follows that $\varphi$ is integral. The latter is a non-trivial fact which cannot be derived by a direct ad hoc computation.

## 数学代写|交换代数代写commutative algebra代考|The Artin-Rees Lemma

(一个一世米)∩米′=一个一世−ķ(一个ķ米∩米′)

(一个一世米)∩米′=一个一世−ķ(一个ķ米∩米′)⊂一个一世−ķ米′

## 数学代写|交换代数代写commutative algebra代考|Krull Dimension

p0⊊p1⊊…⊆pn,在哪里p一世是最理想的R, 表示为暗淡⁡R并称为克鲁尔维度或简称为R.

## 数学代写|交换代数代写commutative algebra代考|Background and Overview

Xn+一个1Xn−1+…+一个n=0

F=Xn+一个1Xn−1+…+一个n∈R[X]

Xn+一个1Xn−1+…+(一个n−披(是))=0

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。