数学代写|凸优化作业代写Convex Optimization代考|Convexity preserving operations

如果你也在 怎样代写凸优化Convex Optimization这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

凸优化是数学优化的一个子领域,研究的是凸集上凸函数最小化的问题。许多类凸优化问题都有多项时间算法,而数学优化一般来说是NP困难的。

statistics-lab™ 为您的留学生涯保驾护航 在代写凸优化Convex Optimization方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写凸优化Convex Optimization代写方面经验极为丰富,各种代写凸优化Convex Optimization相关的作业也就用不着说。

我们提供的凸优化Convex Optimization及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|凸优化作业代写Convex Optimization代考|Convexity preserving operations

数学代写|凸优化作业代写Convex Optimization代考|Intersection

If $S_{1}$ and $S_{2}$ are convex sets, then $S_{1} \cap S_{2}$ is also convex. This property extends to the intersection of an infinite number of convex sets, i.e., if $S_{a}$ is convex for every $\alpha \in \mathcal{A}$, then $\cap_{\alpha \in \mathcal{A}} S_{\alpha}$ is convex. Let us illuminate the usefulness of this convexity preserving operation with the following remarks and examples.

Remark 2.6 A polyhedron can be considered as intersection of a finite number of halfspaces and hyperplanes (which are convex) and hence the polyhedron is convex.

Remark 2.7 Subspaces are closed under arbitrary intersections; so are affine sets and convex cones. So they all are convex sets.

Remark 2.8 A closed convex set $S$ is the intersection of all (possibly an infinite number of) closed halfspaces that contain $S$. This can be proven by the separating hyperplane theory (to be introduced in Subsection 2.6.1).

Example 2.4 The PSD cone $\mathbb{S}{+}^{n}$ is known to be convex. The proof of its convexity by the intersection property is given as follows. It is easy to see that $S{+}^{n}$ can be expressed as
$$
\mathbb{S}{+}^{n}=\left{\mathbf{X} \in \mathbb{S}^{n} \mid \mathbf{z}^{T} \mathbf{X} \mathbf{z} \geq 0, \forall \mathbf{z} \in \mathbb{R}^{n}\right}=\bigcap{\mathbf{z} \in \mathbb{R}^{n}} S_{\mathbf{z}}
$$
where
$$
\begin{aligned}
S_{\mathbf{z}} &=\left{\mathbf{X} \in \mathbb{S}^{n} \mid \mathbf{z}^{T} \mathbf{X} \mathbf{z} \geq 0\right}=\left{\mathbf{X} \in \mathbb{S}^{n} \mid \operatorname{Tr}\left(\mathbf{z}^{T} \mathbf{X} \mathbf{z}\right) \geq 0\right} \
&=\left{\mathbf{X} \in \mathbb{S}^{n} \mid \operatorname{Tr}\left(\mathbf{X} \mathbf{z z}^{T}\right) \geq 0\right}=\left{\mathbf{X} \in \mathbb{S}^{n} \mid \operatorname{Tr}(\mathbf{X} \mathbf{Z}) \geq 0\right}
\end{aligned}
$$
in which $\mathbf{Z}=\mathbf{z z}^{T}$, implying that $S_{\mathbf{z}}$ is a halfspace if $\mathbf{z} \neq \mathbf{0}{n}$. As the intersection of halfspaces is also convex, $\mathbb{S}{+}^{n}$ (intersection of infinite number of halfspaces) is a convex set. It is even easier to prove the convexity of $S_{\mathbf{z}}$ by the definition of convex sets.
Example 2.5 Consider
$$
P(\mathbf{x}, \omega)=\sum_{i=1}^{n} x_{i} \cos (i \omega)
$$
and a set
$$
\begin{aligned}
C &=\left{\mathbf{x} \in \mathbb{R}^{n} \mid l(\omega) \leq P(\mathbf{x}, \omega) \leq u(\omega) \quad \forall \omega \in \Omega\right} \
&=\bigcap_{\omega \in \Omega}\left{\mathbf{x} \in \mathbb{R}^{n} \mid l(\omega) \leq \sum_{i=1}^{n} x_{i} \cos (i \omega) \leq u(\omega)\right}
\end{aligned}
$$
Let
$$
\mathbf{a}(\omega)=[\cos (\omega), \cos (2 \omega), \ldots, \cos (n \omega)]^{T}
$$

Then we have
$C=\bigcap_{\omega \in \Omega}\left{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{a}^{T}(\omega) \mathbf{x} \geq l(\omega), \mathbf{a}^{T}(\omega) \mathbf{x} \leq u(\omega)\right}$ (intersection of halfspaces), which implies that $C$ is convex. Note that the set $C$ is a polyhedron only when the set size $|\Omega|$ is finite.

数学代写|凸优化作业代写Convex Optimization代考|Affine function

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is affine if it takes the form
$$
\boldsymbol{f}(\mathbf{x})=\mathbf{A} \mathbf{x}+\mathbf{b}
$$
where $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$. The affine function, for which $\boldsymbol{f}$ (dom $\boldsymbol{f}$ ) is an affine set if dom $f$ is an affine set, also called the affine transformation or the affine mapping, has been implicitly used in defining the affine hull given by (2.7) in the preceding Subsection 2.1.2. It preserves points, straight lines, and planes, but not necessarily preserves angles between lines or distances between points. The affine mapping plays an important role in a variety of convex sets and convex functions, problem reformulations to be introduced in the subsequent chapters.
Suppose $S \subseteq \mathbb{R}^{n}$ is convex and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is an affine function (see Figure 2.12). Then the image of $S$ under $f$,
$$
f(S)={f(\mathbf{x}) \mid \mathbf{x} \in S}
$$
is convex. The converse is also true, i.e., the inverse image of the convex set $C$
$$
\boldsymbol{f}^{-1}(C)={\mathbf{x} \mid \boldsymbol{f}(\mathbf{x}) \in C}
$$
is convex. The proof is given below.
Proof: Let $\mathbf{y}{1}$ and $\mathbf{y}{2} \in C$. Then there exist $\mathbf{x}{1}$ and $\mathbf{x}{2} \in f^{-1}(C)$ such that $\mathbf{y}{1}=\mathbf{A} \mathbf{x}{1}+\mathbf{b}$ and $\mathbf{y}{2}=\mathbf{A} \mathbf{x}{2}+\mathbf{b}$. Our aim is to show that the set $f^{-1}(C)$, which is the inverse image of $\boldsymbol{f}$, is convex. For $\theta \in[0,1]$,
$$
\begin{aligned}
\theta \mathbf{y}{1}+(1-\theta) \mathbf{y}{2} &=\theta\left(\mathbf{A} \mathbf{x}{1}+\mathbf{b}\right)+(1-\theta)\left(\mathbf{A \mathbf { x } { 2 }}+\mathbf{b}\right) \
&=\mathbf{A}\left(\theta \mathbf{x}{1}+(1-\theta) \mathbf{x}{2}\right)+\mathbf{b} \in C
\end{aligned}
$$
which implies that $\theta \mathbf{x}{1}+(1-\theta) \mathbf{x}{2} \in f^{-1}(C)$, and that the convex combination of $\mathbf{x}{1}$ and $\mathbf{x}{2}$ is in $f^{-1}(C)$, and hence $f^{-1}(C)$ is convex.

Remark 2.9 If $S_{1} \subset \mathbb{R}^{n}$ and $S_{2} \subset \mathbb{R}^{n}$ are convex and $\alpha_{1}, \alpha_{2} \in \mathbb{R}$, then the set $S=\left{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in S_{1}, \mathbf{y} \in S_{2}\right}$ is convex. Furthermore, the set
$$
\alpha_{1} S_{1}+\alpha_{2} S_{2}=\left{\mathbf{z}=\alpha_{1} \mathbf{x}+\alpha_{2} \mathbf{y} \mid \mathbf{x} \in S_{1}, \mathbf{y} \in S_{2}\right} \quad(\text { cf. (1.22) and (1.23)) }
$$
is also convex (since this set can be thought of as the image of the convex set $S$ through the affine mapping given by (2.58) from $S$ to $\alpha_{1} S_{1}+\alpha_{2} S_{2}$ with

数学代写|凸优化作业代写Convex Optimization代考|Perspective function and linear-fractional function

Linear-fractional functions are functions which are more general than affine but still preserve convexity. The perspective function scales or normalizes vectors so that the last component is one, and then drops the last component.

The perspective function $\boldsymbol{p}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$, with $\operatorname{dom} \boldsymbol{p}=\mathbb{R}^{n} \times \mathbb{R}{++}$, is defined as $$ \boldsymbol{p}(\mathbf{z}, t)=\frac{\mathbf{z}}{t} . $$ The perspective function $\boldsymbol{p}$ preserves the convexity of the convex set. Proof: Consider two points $\left(\mathbf{z}{1}, t_{1}\right)$ and $\left(\mathbf{z}{2}, t{2}\right)$ in a convex set $C$ and so $\mathbf{z}{1} / t{1}$ and $\mathbf{z}{2} / t{2} \in \boldsymbol{p}(C)$. Then
$$
\theta\left(\mathbf{z}{1}, t{1}\right)+(1-\theta)\left(\mathbf{z}{2}, t{2}\right)=\left(\theta \mathbf{z}{1}+(1-\theta) \mathbf{z}{2}, \theta t_{1}+(1-\theta) t_{2}\right) \in C,
$$
for any $\theta \in[0,1]$ implying
$$
\frac{\theta \mathbf{z}{1}+(1-\theta) \mathbf{z}{2}}{\theta t_{1}+(1-\theta) t_{2}} \in \boldsymbol{p}(C)
$$
Now, by defining
$$
\mu=\frac{\theta t_{1}}{\theta t_{1}+(1-\theta) t_{2}} \in[0,1],
$$
we get
$$
\frac{\theta \mathbf{z}{1}+(1-\theta) \mathbf{z}{2}}{\theta t_{1}+(1-\theta) t_{2}}=\mu \frac{\mathbf{z}{1}}{t{1}}+(1-\mu) \frac{\mathbf{z}{2}}{t{2}} \in \boldsymbol{p}(C),
$$
which implies $\boldsymbol{p}(C)$ is convex.
A linear-fractional function is formed by composing the perspective function with an affine function. Suppose $\boldsymbol{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m+1}$ is affine, i.e.,
$$
\boldsymbol{g}(\mathbf{x})=\left[\begin{array}{c}
\mathbf{A} \
\mathbf{c}^{T}
\end{array}\right] \mathbf{x}+\left[\begin{array}{l}
\mathbf{b} \
d
\end{array}\right]
$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}, \mathbf{c} \in \mathbb{R}^{n}$, and $d \in \mathbb{R}$. The function $\boldsymbol{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is given by $f=\boldsymbol{p} \circ \boldsymbol{g}$, i.e.,
$$
\boldsymbol{f}(\mathbf{x})=\boldsymbol{p}(\boldsymbol{g}(\mathbf{x}))=\frac{\mathbf{A} \mathbf{x}+\mathbf{b}}{\mathbf{c}^{T} \mathbf{x}+d}, \quad \operatorname{dom} \boldsymbol{f}=\left{\mathbf{x} \mid \mathbf{c}^{T} \mathbf{x}+d>0\right},
$$
is called a linear-fractional (or projective) function. Hence, linear-fractional functions preserve the convexity.

数学代写|凸优化作业代写Convex Optimization代考|Convexity preserving operations

凸优化代写

数学代写|凸优化作业代写Convex Optimization代考|Intersection

如果小号1和小号2是凸集,那么小号1∩小号2也是凸的。这个性质扩展到无限数量的凸集的交集,即,如果小号一种对每个都是凸的一种∈一种, 然后∩一种∈一种小号一种是凸的。让我们用下面的评论和例子来说明这种保持凸性的操作的有用性。

备注 2.6 多面体可以被认为是有限数量的半空间和超平面(它们是凸的)的交集,因此多面体是凸的。

备注 2.7 子空间在任意交点下是封闭的;仿射集和凸锥也是如此。所以它们都是凸集。

备注 2.8 闭凸集小号是所有(可能是无数个)封闭半空间的交集,包含小号. 这可以通过分离超平面理论来证明(将在 2.6.1 小节中介绍)。

示例 2.4 PSD 锥体小号+n已知是凸的。通过交集性质对其凸性的证明如下。很容易看出小号+n可以表示为
\mathbb{S}{+}^{n}=\left{\mathbf{X} \in \mathbb{S}^{n} \mid \mathbf{z}^{T} \mathbf{X} \mathbf {z} \geq 0, \forall \mathbf{z} \in \mathbb{R}^{n}\right}=\bigcap{\mathbf{z} \in \mathbb{R}^{n}} S_ {\mathbf{z}}\mathbb{S}{+}^{n}=\left{\mathbf{X} \in \mathbb{S}^{n} \mid \mathbf{z}^{T} \mathbf{X} \mathbf {z} \geq 0, \forall \mathbf{z} \in \mathbb{R}^{n}\right}=\bigcap{\mathbf{z} \in \mathbb{R}^{n}} S_ {\mathbf{z}}
在哪里
\begin{aligned} S_{\mathbf{z}} &=\left{\mathbf{X} \in \mathbb{S}^{n} \mid \mathbf{z}^{T} \mathbf{X} \mathbf{z} \geq 0\right}=\left{\mathbf{X} \in \mathbb{S}^{n} \mid \operatorname{Tr}\left(\mathbf{z}^{T} \mathbf{X} \mathbf{z}\right) \geq 0\right} \ &=\left{\mathbf{X} \in \mathbb{S}^{n} \mid \operatorname{Tr}\left (\mathbf{X} \mathbf{z z}^{T}\right) \geq 0\right}=\left{\mathbf{X} \in \mathbb{S}^{n} \mid \operatorname{Tr }(\mathbf{X} \mathbf{Z}) \geq 0\right} \end{对齐}\begin{aligned} S_{\mathbf{z}} &=\left{\mathbf{X} \in \mathbb{S}^{n} \mid \mathbf{z}^{T} \mathbf{X} \mathbf{z} \geq 0\right}=\left{\mathbf{X} \in \mathbb{S}^{n} \mid \operatorname{Tr}\left(\mathbf{z}^{T} \mathbf{X} \mathbf{z}\right) \geq 0\right} \ &=\left{\mathbf{X} \in \mathbb{S}^{n} \mid \operatorname{Tr}\left (\mathbf{X} \mathbf{z z}^{T}\right) \geq 0\right}=\left{\mathbf{X} \in \mathbb{S}^{n} \mid \operatorname{Tr }(\mathbf{X} \mathbf{Z}) \geq 0\right} \end{对齐}
其中从=和和吨, 意味着小号和是一个半空格如果和≠0n. 由于半空间的交集也是凸的,小号+n(无限个半空间的交集)是一个凸集。更容易证明凸性小号和根据凸集的定义。
例 2.5 考虑
磷(X,ω)=∑一世=1nX一世因⁡(一世ω)
和一套
\begin{aligned} C &=\left{\mathbf{x} \in \mathbb{R}^{n} \mid l(\omega) \leq P(\mathbf{x}, \omega) \leq u (\omega) \quad \forall \omega \in \Omega\right} \ &=\bigcap_{\omega \in \Omega}\left{\mathbf{x} \in \mathbb{R}^{n} \ mid l(\omega) \leq \sum_{i=1}^{n} x_{i} \cos (i \omega) \leq u(\omega)\right} \end{对齐}\begin{aligned} C &=\left{\mathbf{x} \in \mathbb{R}^{n} \mid l(\omega) \leq P(\mathbf{x}, \omega) \leq u (\omega) \quad \forall \omega \in \Omega\right} \ &=\bigcap_{\omega \in \Omega}\left{\mathbf{x} \in \mathbb{R}^{n} \ mid l(\omega) \leq \sum_{i=1}^{n} x_{i} \cos (i \omega) \leq u(\omega)\right} \end{对齐}

一种(ω)=[因⁡(ω),因⁡(2ω),…,因⁡(nω)]吨

然后我们有
C=\bigcap_{\omega \in \Omega}\left{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{a}^{T}(\omega) \mathbf{x } \geq l(\omega), \mathbf{a}^{T}(\omega) \mathbf{x} \leq u(\omega)\right}C=\bigcap_{\omega \in \Omega}\left{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{a}^{T}(\omega) \mathbf{x } \geq l(\omega), \mathbf{a}^{T}(\omega) \mathbf{x} \leq u(\omega)\right}(半空间的交集),这意味着C是凸的。请注意,集C仅当设定大小时才为多面体|Ω|是有限的。

数学代写|凸优化作业代写Convex Optimization代考|Affine function

一个函数F:Rn→R米如果它采用形式是仿射的
F(X)=一种X+b
在哪里一种∈R米×n和b∈R米. 仿射函数,其中F(domF) 是一个仿射集,如果 domF是一个仿射集,也称为仿射变换或仿射映射,已隐式用于定义前面 2.1.2 小节中 (2.7) 给出的仿射壳。它保留点、直线和平面,但不一定保留线之间的角度或点之间的距离。仿射映射在各种凸集和凸函数中发挥着重要作用,问题重构将在后续章节中介绍。
认为小号⊆Rn是凸的并且F:Rn→R米是一个仿射函数(见图 2.12)。然后的图像小号在下面F,
F(小号)=F(X)∣X∈小号
是凸的。反之亦然,即凸集的逆像C
F−1(C)=X∣F(X)∈C
是凸的。证明如下。
证明:让是1和是2∈C. 那么存在X1和X2∈F−1(C)这样是1=一种X1+b和是2=一种X2+b. 我们的目标是证明集合F−1(C),这是F, 是凸的。为了θ∈[0,1],
θ是1+(1−θ)是2=θ(一种X1+b)+(1−θ)(一种X2+b) =一种(θX1+(1−θ)X2)+b∈C
这意味着θX1+(1−θ)X2∈F−1(C), 并且凸组合X1和X2在F−1(C), 因此F−1(C)是凸的。

备注 2.9 如果小号1⊂Rn和小号2⊂Rn是凸的并且一种1,一种2∈R,那么集合S=\left{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in S_{1}, \mathbf{y} \in S_{2}\right}S=\left{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in S_{1}, \mathbf{y} \in S_{2}\right}是凸的。此外,该集
\alpha_{1} S_{1}+\alpha_{2} S_{2}=\left{\mathbf{z}=\alpha_{1} \mathbf{x}+\alpha_{2} \mathbf{y} \mid \mathbf{x} \in S_{1}, \mathbf{y} \in S_{2}\right} \quad(\text { 参见 (1.22) 和 (1.23)) }\alpha_{1} S_{1}+\alpha_{2} S_{2}=\left{\mathbf{z}=\alpha_{1} \mathbf{x}+\alpha_{2} \mathbf{y} \mid \mathbf{x} \in S_{1}, \mathbf{y} \in S_{2}\right} \quad(\text { 参见 (1.22) 和 (1.23)) }
也是凸的(因为这个集合可以被认为是凸集的图像小号通过 (2.58) 给出的仿射映射从小号到一种1小号1+一种2小号2和

数学代写|凸优化作业代写Convex Optimization代考|Perspective function and linear-fractional function

线性分数函数是比仿射更一般但仍保持凸性的函数。透视函数对向量进行缩放或归一化,使最后一个分量为 1,然后丢弃最后一个分量。

透视函数p:Rn+1→Rn, 和dom⁡p=Rn×R++, 定义为p(和,吨)=和吨.透视函数p保持凸集的凸性。证明:考虑两点(和1,吨1)和(和2,吨2)在凸集C所以和1/吨1和和2/吨2∈p(C). 然后
θ(和1,吨1)+(1−θ)(和2,吨2)=(θ和1+(1−θ)和2,θ吨1+(1−θ)吨2)∈C,
对于任何θ∈[0,1]暗示
θ和1+(1−θ)和2θ吨1+(1−θ)吨2∈p(C)
现在,通过定义
μ=θ吨1θ吨1+(1−θ)吨2∈[0,1],
我们得到
θ和1+(1−θ)和2θ吨1+(1−θ)吨2=μ和1吨1+(1−μ)和2吨2∈p(C),
这意味着p(C)是凸的。
通过将透视函数与仿射函数组合形成线性分数函数。认为G:Rn→R米+1是仿射的,即
G(X)=[一种 C吨]X+[b d]

在哪里一种∈R米×n,b∈R米,C∈Rn, 和d∈R. 功能F:Rn→R米是(谁)给的F=p∘G, IE,
\boldsymbol{f}(\mathbf{x})=\boldsymbol{p}(\boldsymbol{g}(\mathbf{x}))=\frac{\mathbf{A} \mathbf{x}+\mathbf{ b}}{\mathbf{c}^{T} \mathbf{x}+d}, \quad \operatorname{dom} \boldsymbol{f}=\left{\mathbf{x} \mid \mathbf{c} ^{T} \mathbf{x}+d>0\right},\boldsymbol{f}(\mathbf{x})=\boldsymbol{p}(\boldsymbol{g}(\mathbf{x}))=\frac{\mathbf{A} \mathbf{x}+\mathbf{ b}}{\mathbf{c}^{T} \mathbf{x}+d}, \quad \operatorname{dom} \boldsymbol{f}=\left{\mathbf{x} \mid \mathbf{c} ^{T} \mathbf{x}+d>0\right},
称为线性分数(或投影)函数。因此,线性分数函数保留了凸性。

数学代写|凸优化作业代写Convex Optimization代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注