### 数学代写|复变函数作业代写Complex function代考|The Cauchy Estimates and Liouville’s Theorem

statistics-lab™ 为您的留学生涯保驾护航 在代写复变函数Complex function方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写复变函数Complex function代写方面经验极为丰富，各种代写复变函数Complex function相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 数学代写|复变函数作业代写Complex function代考|The Cauchy Estimates and Liouville’s Theorem

This section will establish some estimates for the derivatives of holomorphic functions in terms of bounds on the function itself. The possibility

of such estimation is a feature of holomorphic function theory that has no analogue in the theory of real variables. For example: The functions $f_{k}(x)=\sin k x, x \in \mathbb{R}, k \in \mathbb{Z}$, are for all $k$ bounded in absolute value by 1 ; but their derivatives at 0 are not bounded since $f_{k}^{\prime}(0)=k$. The reader should think frequently about the ways in which real function theory and complex holomorphic function theory differ. In the subject matter of this section, the differences are particularly pronounced.
Theorem 3.4.1 (The Cauchy estimates). Let $f: U \rightarrow \mathbb{C}$ be a holomorphic function on an open set $U, P \in U$, and assume that the closed disc $\bar{D}(P, r), r>0$, is contained in $U$. Set $M=\sup {z \in \bar{D}(P, r)}|f(z)|$. Then for $k=1,2,3 \ldots$ we have $$\left|\frac{\partial^{k} f}{\partial z^{k}}(P)\right| \leq \frac{M k !}{r^{k}}$$ Proof. By Theorem 3.1.1, $$\frac{\partial^{k} f}{\partial z^{k}}(P)=\frac{k !}{2 \pi i} \oint{|\zeta-P|=r} \frac{f(\zeta)}{(\zeta-P)^{k+1}} d \zeta$$
Now we use Proposition 2.1.8 to see that
$$\left|\frac{\partial^{k} f}{\partial z^{k}}(P)\right| \leq \frac{k !}{2 \pi} \cdot 2 \pi r \sup {|\zeta-P|=r} \frac{|f|}{|\zeta-P|^{k+1}} \leq \frac{M k !}{r^{k}}$$ Notice that the Cauchy estimates enable one to estimate directly the radius of convergence of the power series $$\sum \frac{f^{(k)}(P)}{k !}(z-P)^{k}$$ Namely $$\limsup {k \rightarrow+\infty}\left|\frac{f^{(k)}(P)}{k !}\right|^{1 / k} \leq \limsup {k \rightarrow+\infty}\left|\frac{M \cdot k !}{r^{k}} \cdot \frac{1}{k !}\right|^{1 / k}=\frac{1}{r}$$ for any $r$ such that $\bar{D}(P, r) \subseteq U$. In particular, the radius of convergence, which equals $$\left[\limsup {k \rightarrow+\infty}\left|\frac{f^{(k)}(P)}{k !}\right|^{1 / k}\right]^{-1}$$
is at least $1 /(1 / r)=r$ for all $r$ such that $\bar{D}(P, r) \subseteq U$. Hence the radius of convergence is at least as large as the distance from $P$ to $\mathbb{C} \backslash U$ (this result was considered from a different perspective in Theorem 3.3.1).

The derivative bounds of Theorem 3.4.1 have some remarkable consequences. The first one is the fact that a holomorphic function on $\mathbb{C}$ that is bounded in absolute value is in fact constant. We shall need the following lemma to prove this.

## 数学代写|复变函数作业代写Complex function代考|Uniform Limits of Holomorphic Functions

We have already seen that a convergent power series (in $z$ ) defines a holomorphic function (Lemma 3.2.10). One can think of this fact as the assertion that a certain sequence of holomorphic functions, namely the finite partial sums of the series, has a holomorphic limit. This idea, that a limit of holomorphic functions is holomorphic, holds in almost unrestricted generality.
Theorem 3.5.1. Let $f_{j}: U \rightarrow \mathbb{C}, j=1,2,3 \ldots$, be a sequence of holomorphic functions on an open set $U$ in $\mathbb{C}$. Suppose that there is a function $f: U \rightarrow \mathbb{C}$ such that, for each compact subset $E$ of $U$, the sequence $\left.f_{j}\right|{E}$ converges uniformly to $\left.f\right|{E}$. Then $f$ is holomorphic on $U$. (In particular, $\left.f \in C^{\infty}(U)_{.}\right)$

Before beginning the proof, we again note the contrast with the realvariable situation. Any continuous function from $\mathbb{R}$ to $\mathbb{R}$ is the limit, uniformly on compact subsets of $\mathbb{R}$, of some sequence of polynomials: This is the well-known Weierstrass approximation theorem. But, of course, a continuous function from $\mathbb{R}$ to $\mathbb{R}$ certainly need not be real analytic, or even $C^{\infty}$. The difference between the real-variable situation and that of the theorem is related to the Cauchy estimates. The convergence of a sequence of holomorphic functions implies convergence of their derivatives also. No such estimation holds in the real case, and a sequence of $C^{\infty}$ functions can converge uniformly without their derivatives having any convergence properties at all (see Exercise 1 and [RUD1]).

We shall give one detailed proof of Theorem 3.5.1 and sketch a second. The first method is especially brief.

Proof of Theorem 3.5.1. Let $P \in U$ be arbitrary. Then choose $r>0$ such that $\bar{D}(P, r) \subseteq U$. Since $\left{f_{j}\right}$ converges to $f$ uniformly on $\bar{D}(P, r)$ and since each $f_{j}$ is continuous, $f$ is also continuous on $\bar{D}(P, r)$. For any $z \in D(P, r)$

## 数学代写|复变函数作业代写Complex function代考|The Zeros of a Holomorphic Function

Let $f$ be a holomorphic function. If $f$ is not identically zero, then it turns out that $f$ cannot vanish at too many points. This once again bears out the dictum that holomorphic functions are a lot like polynomials. The idea has a precise formulation as follows:

Theorem 3.6.1. Let $U \subseteq \mathbb{C}$ be a connected open set and let $f: U \rightarrow \mathbb{C}$ be holomorphic. Let $\mathbf{Z}={z \in U: f(z)=0}$. If there are a $z_{0} \in \mathbf{Z}$ and $\left{z_{j}\right}_{j=1}^{\infty} \subseteq \mathbf{Z} \backslash\left{z_{0}\right}$ such that $z_{j} \rightarrow z_{0}$, then $f \equiv 0$.

Let us formulate Theorem $3.6 .1$ in topological terms. We recall that a point $z_{0}$ is said to be an accumulation point of a set $Z$ if there is a sequence $\left{z_{j}\right} \subseteq Z \backslash\left{z_{0}\right}$ with $\lim {j \rightarrow \infty} z{j}=z_{0}$. Then Theorem $3.6 .1$ is equivalent to the statement: If $f: U \rightarrow \mathbb{C}$ is a holomorphic function on a connected open set $U$ and if $Z={z \in U: f(z)=0}$ has an accumulation point in $U$, then $f \equiv 0$.

There is still more terminology attached to the situation in Theorem 3.6.1. A set $S$ is said to be discrete if for each $s \in S$ there is an $\epsilon>0$ such that $D(s, \epsilon) \cap S={s}$. People also say, in an abuse of language, that a discrete set has points which are “isolated” or that $S$ contains only “isolated points.” Theorem 3.6.1 thus asserts that if $f$ is a nonconstant holomorphic function on a connected open set, then its zero set is discrete or, less formally, the zeros of $f$ are isolated. It is important to realize that Theorem 3.6.1 does not rule out the possibility that the zero set of $f$ can have accumulation points in $\mathbb{C} \backslash U$; in particular, a nonconstant holomorphic function on an open set $U$ can indeed have zeros accumulating at a point of $\partial U$. For example, the function $f(z)=\sin (1 /(1-z))$ is holomorphic on $U=D(0,1)$ and vanishes on the set
$$\mathbf{Z}=\left{1-\frac{1}{\pi n}: n=1,2,3, \ldots\right} .$$
Plainly $\mathbf{Z}$ has no accumulation points in $U$; however the point $1 \in \partial U$ is an accumulation point of $\mathbf{Z}$.

Proof of Theorem 3.6.1. We first claim that, under the hypotheses of the theorem, $(\partial / \partial z)^{n} f\left(z_{0}\right)=0$ for every nonnegative integer $n$. If this is not the case, let $n_{0}$ be the least nonnegative integer $n$ such that
$$\left(\frac{\partial}{\partial z}\right)^{n_{0}} f\left(z_{0}\right) \neq 0$$
Then we have, on some small disc $D\left(z_{0}, r\right)$, the power series expansion
$$f(z)=\sum_{j=n_{0}}^{\infty}\left(\frac{\partial^{j}}{\partial z^{j}} f\left(z_{0}\right)\right) \frac{\left(z-z_{0}\right)^{j}}{j !} .$$
Therefore the function $g$ defined by
$$g(z) \equiv \sum_{j=n_{0}}^{\infty}\left(\frac{\partial}{\partial z}\right)^{j} f\left(z_{0}\right) \frac{\left(z-z_{0}\right)^{j-n_{0}}}{j !}$$
is holomorphic on $D\left(z_{0}, r\right)$ and $g\left(z_{0}\right) \neq 0$ since $\left(\frac{\partial}{\partial z}\right)^{n_{0}} f\left(z_{0}\right) \neq 0$. Notice that the indicated power series has the same radius of convergence as that for $f$ itself. Furthermore, $g\left(z_{l}\right)=0$ for $l=1,2,3, \ldots$. But then, by the continuity of $g, g\left(z_{0}\right)=0$. This contradiction proves our claim.

## 数学代写|复变函数作业代写Complex function代考|The Cauchy Estimates and Liouville’s Theorem

|∂ķF∂和ķ(磷)|≤ķ!2圆周率⋅2圆周率r支持|G−磷|=r|F||G−磷|ķ+1≤米ķ!rķ请注意，柯西估计使人们能够直接估计幂级数的收敛半径∑F(ķ)(磷)ķ!(和−磷)ķ即林汤ķ→+∞|F(ķ)(磷)ķ!|1/ķ≤林汤ķ→+∞|米⋅ķ!rķ⋅1ķ!|1/ķ=1r对于任何r这样D¯(磷,r)⊆在. 特别是，收敛半径等于[林汤ķ→+∞|F(ķ)(磷)ķ!|1/ķ]−1

## 数学代写|复变函数作业代写Complex function代考|Uniform Limits of Holomorphic Functions

We have already seen that a convergent power series (in z ) defines a holomorphic function (Lemma 3.2.10). One can think of this fact as the assertion that a certain sequence of holomorphic functions, namely the finite partial sums of the series, has a holomorphic limit. This idea, that a limit of holomorphic functions is holomorphic, holds in almost unrestricted generality.
Theorem 3.5.1. Let fj:U→C,j=1,2,3…, be a sequence of holomorphic functions on an open set U in C. Suppose that there is a function f:U→C such that, for each compact subset E of U, the sequence fj|E converges uniformly to f|E. Then f is holomorphic on U. (In particular, f∈C∞(U).)

Before beginning the proof, we again note the contrast with the realvariable situation. Any continuous function from R to R是限制，一致地在紧凑子集上R, 一些多项式序列：这是著名的 Weierstrass 逼近定理。但是，当然，一个连续的函数R到R当然不必是真正的分析，甚至C∞. 实变量情况与定理的区别与柯西估计有关。一系列全纯函数的收敛也意味着它们的导数的收敛。在实际情况中没有这样的估计，并且一系列C∞函数可以均匀收敛，而它们的导数根本不具有任何收敛特性（参见练习 1 和 [RUD1]）。

## 数学代写|复变函数作业代写Complex function代考|The Zeros of a Holomorphic Function

\mathbf{Z}=\left{1-\frac{1}{\pi n}: n=1,2,3, \ldots\right} 。\mathbf{Z}=\left{1-\frac{1}{\pi n}: n=1,2,3, \ldots\right} 。

(∂∂和)n0F(和0)≠0

F(和)=∑j=n0∞(∂j∂和jF(和0))(和−和0)jj!.

G(和)≡∑j=n0∞(∂∂和)jF(和0)(和−和0)j−n0j!

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。