### 数学代写|复变函数作业代写Complex function代考|Meromorphic Functions and Residues

statistics-lab™ 为您的留学生涯保驾护航 在代写复变函数Complex function方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写复变函数Complex function代写方面经验极为丰富，各种代写复变函数Complex function相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• Advanced Probability Theory 高等概率论
• Advanced Mathematical Statistics 高等数理统计学
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 数学代写|复变函数作业代写Complex function代考|The Behavior of a Holomorphic Function

In the proof of the Cauchy integral formula in Section 2.4, we saw that it is often important to consider a function that is holomorphic on a punctured open set $U \backslash{P} \subset \mathbb{C}$. The consideration of a holomorphic function with such an “isolated singularity” turns out to occupy a central position in much of the subject. These singularities can arise in various ways. Perhaps the most obvious way occurs as the reciprocal of a holomorphic function, for instance passing from $z^{j}$ to $1 / z^{j}, j$ a positive integer. More complicated examples can be generated, for instance, by exponentiating the reciprocals of holomorphic functions: for example, $e^{1 / z}, z \neq 0$.

In this chapter we shall study carefully the behavior of holomorphic functions near a singularity. In particular, we shall obtain a new kind of infinite series expansion which generalizes the idea of the power series expansion of a holomorphic function about a (nonsingular) point. We shall in the process completely classify the behavior of holomorphic functions near an isolated singular point.

Let $U \subseteq \mathbb{C}$ be an open set and $P \in U$. Suppose that $f: U \backslash{P} \rightarrow \mathbb{C}$ is holomorphic. In this situation we say that $f$ has an isolated singular point (or isolated singularity) at $P$. The implication of the phrase is usually just that $f$ is defined and holomorphic on some such “deleted neighborhood” of $P$. The specification of the set $U$ is of secondary interest; we wish to consider the behavior of $f$ “near $P^{\prime \prime}$.

There are three possibilities for the behavior of $f$ near $P$ that are worth distinguishing:
(i) $|f(z)|$ is bounded on $D(P, r) \backslash{P}$ for some $r>0$ with $D(P, r) \subseteq$ $U$; that is, there is some $r>0$ and some $M>0$ such that $|f(z)| \leq$ $M$ for all $z \in U \cap D(P, r) \backslash{P}$.
(ii) $\lim _{z \rightarrow P}|f(z)|=+\infty$.
(iii) Neither (i) nor (ii) applies.
Of course this classification does not say much unless we can find some other properties of $f$ related to (i), (ii), and (iii). We shall prove momentarily that if case (i) holds, then $f$ has a limit at $P$ which extends $f$ so that it is holomorphic on all of $U$. It is commonly said in this circumstance that $f$ has a removable singularity at $P$. In case (ii), we will say that $f$ has a pole at $P$. In case (iii), $f$ will be said to have an essential singularity at $P$. Our goal in this and the next section is to understand (i), (ii), and (iii) in some further detail.

Theorem 4.1.1 (The Riemann removable singularities theorem). Let $f$ : $D(P, r) \backslash{P} \rightarrow \mathbb{C}$ be holomorphic and bounded. Then
(1) $\lim {z \rightarrow P} f(z)$ exists; (2) the function $\widehat{f}: D(P, r) \rightarrow \mathbb{C}$ defined by $$\widehat{f}(z)=\left{\begin{array}{lll} f(z) & \text { if } & z \neq P \ \lim {\zeta \rightarrow P} f(\zeta) & \text { if } & z=P \end{array}\right.$$
is holomorphic.

## 数学代写|复变函数作业代写Complex function代考|Expansion around Singular Points

To aid in our further understanding of poles and essential singularities, we are going to develop a method of series expansion of holomorphic functions on $D(P, r) \backslash{P}$. Except for removable singularities, we cannot expect to expand such a function in a power series convergent in a neighborhood of $P$, since such a power series would define a holomorphic function on a whole neighborhood of $P$, including $P$ itself. A natural extension of the idea of power series is to allow negative as well as positive powers of $(z-P)$. This extension turns out to be enough to handle poles and essential singularities

both. That it works well for poles is easy to see; essential singularities take a bit more work. We turn now to the details.
A Laurent series on $D(P, r)$ is a (formal) expression of the form
$$\sum_{j=-\infty}^{+\infty} a_{j}(z-P)^{j}$$
Note that the individual terms are each defined for all $z \in D(P, r) \backslash{P}$.
To discuss Laurent series in terms of convergence, we must first make a general agreement as to the meaning of the convergence of a “doubly infinite” series $\sum_{j=-\infty}^{+\infty} \alpha_{j}$. We say that such a series converges if $\sum_{j=0}^{+\infty} \alpha_{j}$ and $\sum_{j=1}^{+\infty} \alpha_{-j}$ converge in the usual sense. In this case, we set
$$\sum_{-\infty}^{+\infty} \alpha_{j}=\left(\sum_{j=0}^{+\infty} \alpha_{j}\right)+\left(\sum_{j=1}^{+\infty} \alpha_{-j}\right)$$
You can check easily that $\sum_{-\infty}^{+\infty} \alpha_{j}$ converges to a complex number $\sigma$ if and only if for each $\epsilon>0$ there is an $N>0$ such that, if $\ell \geq N$ and $k \geq N$, then $\left|\left(\sum_{j=-k}^{\ell} \alpha_{j}\right)-\sigma\right|<\epsilon$. It is important to realize that $\ell$ and $k$ are independent here. [In particular, the existence of the limit $\lim {k \rightarrow+\infty} \sum{j=-k}^{+k} \alpha_{j}$ does not imply in general that $\sum_{-\infty}^{+\infty} \alpha_{j}$ converges. See Exercises 10 and 11.]

With these convergence ideas in mind, we can now present the analogue for Laurent series of Lemmas $3.2 .3$ and $3.2 .5$ for power series.

Lemma 4.2.1. If $\sum_{j=-\infty}^{+\infty} a_{j}(z-P)^{j}$ converges at $z_{1} \neq P$ and at $z_{2} \neq P$ and if $\left|z_{1}-P\right|<\left|z_{2}-P\right|$, then the series converges for all $z$ with $\left|z_{1}-P\right|<$ $|z-P|<\left|z_{2}-P\right|$.

Refer to Figure $4.1$ for an illustration of the situation described in the Lemma.

Proof of Lemma 4.2.1. If $\sum_{j=-\infty}^{+\infty} a_{j}\left(z_{2}-P\right)^{j}$ converges, then the definition of convergence of a doubly infinite sum implies that $\sum_{j=0}^{+\infty} a_{j}\left(z_{2}-P\right)^{j}$ converges. By Lemma $3.2 .3, \sum_{j=0}^{+\infty} a_{j}(z-P)^{j}$ then converges when $|z-P|<$ $\left|z_{2}-P\right|$. If $\sum_{j=-\infty}^{+\infty} a_{j}\left(z_{1}-P\right)^{j}$ converges, then so does $\sum_{j=1}^{+\infty} a_{-j}\left(z_{1}-P\right)^{-j}$. Since $0<\left|z_{1}-P\right|<|z-P|$, it follows that $|1 /(z-P)|<\left|1 /\left(z_{1}-P\right)\right|$. Hence Lemma 3.2.3 again applies to show that $\sum_{j=1}^{+\infty} a_{-j}(z-P)^{-j}$ converges. Thus $\sum_{-\infty}^{+\infty} a_{j}(z-P)^{j}$ converges when $\left|z_{1}-P\right|<|z-P|<\left|z_{2}-P\right|$.

## 数学代写|复变函数作业代写Complex function代考|Existence of Laurent Expansions

We turn now to establishing that convergent Laurent expansions of functions holomorphic on an annulus do in fact exist. We will require the following result.

Theorem 4.3.1 (The Cauchy integral formula for an annulus). Suppose that $0 \leq r_{1}<r_{2} \leq+\infty$ and that $f: D\left(P, r_{2}\right) \backslash \bar{D}\left(P, r_{1}\right) \rightarrow \mathbb{C}$ is holomorphic. Then, for each $s_{1}, s_{2}$ such that $r_{1}<s_{1}<s_{2}<r_{2}$ and each $z \in D\left(P, s_{2}\right) \backslash$ $\bar{D}\left(P, s_{1}\right)$, it holds that
$$f(z)=\frac{1}{2 \pi i} \oint_{|\zeta-P|=s_{2}} \frac{f(\zeta)}{\zeta-z} d \zeta-\frac{1}{2 \pi i} \oint_{|\zeta-P|=s_{1}} \frac{f(\zeta)}{\zeta-z} d \zeta .$$
Proof. Fix a point $z \in D\left(P, s_{2}\right) \backslash \bar{D}\left(P, s_{1}\right)$. Define, for $\zeta \in D\left(P, r_{2}\right) \backslash$ $\bar{D}\left(P, r_{1}\right)$,
$$g_{z}(\zeta)= \begin{cases}\frac{f(\zeta)-f(z)}{\zeta-z} & \zeta \neq z \ f^{\prime}(z) & \zeta=z\end{cases}$$
Then $g_{z}$ is a holomorphic function of $\zeta, \zeta \in D\left(P, r_{2}\right) \backslash \bar{D}\left(P, r_{1}\right)$ (by the Riemann removable singularities theorem).
Now we consider the integrals
$$\oint_{|\zeta-P|=s_{1}} g_{z}(\zeta) d \zeta$$
and
$$\oint_{|\zeta-P|=s_{2}} g_{z}(\zeta) d \zeta$$
By the considerations in Section 2.6, these two. integrals are equal. So
$$0=\oint_{|\zeta-P|=s_{2}} g_{z}(\zeta) d \zeta-\oint_{|\zeta-P|=s_{1}} g_{z}(\zeta) d \zeta$$

$$=\oint_{|\zeta-P|=s_{2}} \frac{f(\zeta)-f(z)}{\zeta-z} d \zeta-\oint_{|\zeta-P|=s_{1}} \frac{f(\zeta)-f(z)}{\zeta-z} d \zeta$$
Hence
\begin{aligned} &\oint_{|\zeta-P|=s_{2}} \frac{f(\zeta)}{\zeta-z} d \zeta-\oint_{|\zeta-P|=s_{2}} \frac{f(z)}{\zeta-z} d \zeta \ &=\oint_{|\zeta-P|=s_{1}} \frac{f(\zeta)}{\zeta-z} d \zeta-\oint_{|\zeta-P|=s_{1}} \frac{f(z)}{\zeta-z} d \zeta \end{aligned}
Now
$$\oint_{|\zeta-P|=s_{2}} \frac{f(z)}{\zeta-z} d \zeta=f(z) \oint_{|\zeta-P|=s_{2}} \frac{1}{\zeta-z} d \zeta=2 \pi i f(z)$$
by the Cauchy integral formula for the constant function 1 on $D\left(P, r_{2}\right)$ (or by direct calculation).
Also
$$\oint_{|\zeta-P|=s_{1}} \frac{f(z)}{\zeta-z} d \zeta=f(z) \oint_{|\zeta-P|=s_{1}} \frac{1}{\zeta-z} d \zeta=0 .$$
This can be seen from the Cauchy integral theorem (Theorem 2.4.3) since $1 /(\zeta-z)$ is holomorphic for $\zeta \in D(P,|z-P|)$ and $\left{\zeta:|\zeta-P| \leq s_{1}\right} \subseteq$ $D(P,|z-P|)$. See Figure $4.2$.
So
$$2 \pi i f(z)=\oint_{|\zeta-P|=s_{2}} \frac{f(\zeta)}{\zeta-z} d \zeta-\oint_{|\zeta-P|=s_{1}} \frac{f(\zeta)}{\zeta-z} d \zeta$$
as desired.

## 数学代写|复变函数作业代写Complex function代考|The Behavior of a Holomorphic Function

(i)|F(和)|有界D(磷,r)∖磷对于一些r>0和D(磷,r)⊆ 在; 也就是说，有一些r>0还有一些米>0这样|F(和)|≤ 米对全部和∈在∩D(磷,r)∖磷.
(二)林和→磷|F(和)|=+∞.
(iii) (i) 或 (ii) 均不适用。

（一）林和→磷F(和)存在；(2) 功能F^:D(磷,r)→C由 $$\widehat{f}(z)=\left{ 定义F(和) 如果 和≠磷 林G→磷F(G) 如果 和=磷\对。$$

## 数学代写|复变函数作业代写Complex function代考|Expansion around Singular Points

∑j=−∞+∞一种j(和−磷)j

∑−∞+∞一种j=(∑j=0+∞一种j)+(∑j=1+∞一种−j)

## 数学代写|复变函数作业代写Complex function代考|Existence of Laurent Expansions

F(和)=12圆周率一世∮|G−磷|=s2F(G)G−和dG−12圆周率一世∮|G−磷|=s1F(G)G−和dG.

G和(G)={F(G)−F(和)G−和G≠和 F′(和)G=和

∮|G−磷|=s1G和(G)dG

∮|G−磷|=s2G和(G)dG

0=∮|G−磷|=s2G和(G)dG−∮|G−磷|=s1G和(G)dG=∮|G−磷|=s2F(G)−F(和)G−和dG−∮|G−磷|=s1F(G)−F(和)G−和dG

∮|G−磷|=s2F(G)G−和dG−∮|G−磷|=s2F(和)G−和dG =∮|G−磷|=s1F(G)G−和dG−∮|G−磷|=s1F(和)G−和dG

∮|G−磷|=s2F(和)G−和dG=F(和)∮|G−磷|=s21G−和dG=2圆周率一世F(和)

∮|G−磷|=s1F(和)G−和dG=F(和)∮|G−磷|=s11G−和dG=0.

2圆周率一世F(和)=∮|G−磷|=s2F(G)G−和dG−∮|G−磷|=s1F(G)G−和dG

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。