### 数学代写|拓扑学代写Topology代考|MATH3061

statistics-lab™ 为您的留学生涯保驾护航 在代写拓扑学Topology方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写拓扑学Topology代写方面经验极为丰富，各种代写拓扑学Topology相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 数学代写|拓扑学代写Topology代考|Nanostructures for Localized Surface Plasmonic

Localized surface plasmon resonances are the strong interaction between metal nanostructures and visible light through the resonant excitations of collective oscillations of conduction electrons. In localized surface plasmon resonances, the local electromagnetic field near the nanostructure can be many orders of magnitude higher than the incident field, and the incident field around the resonant-peak wavelength is scattered strongly; the enhanced electric field is confined within only a tiny region of the nanometer length scale near the surface of the nanostructures and decays significantly thereafter [79]. Surface enhanced Raman spectroscopy (SERS) is one typical application of localized surface plasmon resonances [65]. In this section, the computational design is carried out for the metallic nanostructures of surface enhanced Raman spectroscopy using the proposed methodology.

In surface enhanced Raman spectroscopy, the strength of localized surface plasmon resonances can be measured by the maximal enhancement factor (EF) defined as $\sup {\mathbf{x} \in \Omega}|\mathbf{E}|^{4} / E{0}^{4}$, where
$$\mathbf{E}=\frac{1}{j \varepsilon_{r} \varepsilon_{0} \omega} \nabla \times\left(0,0, H_{z}\right)$$
is the total electric field and $E_{0}=\sqrt{\mu_{0} / \varepsilon_{0}}$ is the amplitude of the electric wave corresponding to the incident magnetic wave. Then the design objective can be chosen to maximize the enhancement factor
$$J=\left.\frac{1}{f_{e 0}} \frac{|\mathbf{E}|^{4}}{E_{0}^{4}}\right|{\mathbf{x}=\mathbf{x}{0}}=\frac{1}{f_{e 0}} \int_{\Omega} \frac{|\mathbf{E}|^{4}}{E_{0}^{4}} \delta\left(\operatorname{dist}\left(\mathbf{x}, \mathbf{x}_{0}\right)\right) \mathrm{d} \Omega$$ where the enhancement factor is normalized by $f_{e 0}$; and $f_{e 0}$ is the enhancement factor at $\mathbf{x}{0}$, corresponding to the nanostructure with metal material filled the design domain completely; $\mathbf{x}{0}$ is the reasonably chosen enhancement position in $\Omega ; \delta(*)$ is the Dirac function; dist $\left(\mathbf{x}, \mathbf{x}{0}\right.$ ) is the Euclidean distance between the point $\forall \mathbf{x} \in \Omega$ and the specified position $\mathbf{x}{0}$. The enhancement position $\mathbf{x}_{0}$ should be presented at the surface or coupling position of nanostructures, because the maximal enhancement factor must be at the metal surface or coupling position in localized surface plasmon resonances.

## 数学代写|拓扑学代写Topology代考|Nanoslits for Extraordinary Optical Transmission

This section presents the inverse design of resonant nanostructures for extraordinary optical transmission of periodic metallic slits, where topology optimization approach is utilized to implement the inverse design procedure and find the geometrical configurations of the nanostructures. By using the inverse design method, the subwavelength-sized resonant nanostructures, localized at the inlet and outlet sides of the periodic metallic slits, are derived with transmission peaks at the prescribed incident wavelengths. The transmissivity is enhanced by effective excitation and guidance of surface plasmon polariton at the inlet side of the slits, coherent resonance of surface plasmon polariton inside the slits and radiation of the photonic energy at the outlet side of the slits.

The transmission peaks of the periodic metallic slits, with inversely designed resonant nanostructures, are raised along with the red shift of the incident wavelength. The position of the transmission peak of periodic metallic slits can be controlled and localized at a desired frequency, by specifying the incident wave with the wavelength

corresponding to the desired frequency preset in the inverse design procedure. By maximizing the minimum transmissivity of the periodic metallic slits with incident wavelengths in a prescribed wavelength range, the extraordinary optical transmission bandwidth can be enlarged, and the sensitivity of transmissivity to wavelength can be decreased equivalently.

Extraordinary optical transmission is the phenomenon of greatly enhanced transmission of light through a subwavelength aperture in an otherwise opaque metallic film which has been patterned with a regularly repeating periodic structure. It was firstly described by Ebbesen et al in 1998 [29]. In extraordinary optical transmission, the regularly repeating structures enable much higher transmissivity to occur, up to several orders of magnitude greater than that predicted by classical aperture theory. The mechanism of extraordinary optical transmission is attributed to the scattering of surface plasmon polaritons $[35,56]$. Extraordinary optical transmission offers one key advantage over a surface plasmonic resonance device, which is a nanometermicrometer scale device, and it is particularly amenable to miniaturization.

## 数学代写|拓扑学代写Topology代考|Modeling

For optical waves propagating in a plane, transverse magnetic polarized waves can excite the surface plasmon resonances in the cross sections of metal nanostructures with an infinite thickness. Therefore, the incident wave is chosen as a transverse magnetic wave. A cross section of the periodic metallic slits is illuminated in Fig. $4.9$ with a uniform monochromatic transverse magnetic wave propagation.

The computational domain is set to be one period of the metallic slits. Topology optimization approach is utilized to inversely design the nanostructures localized in the bilateral regions of the preset metallic slits. The design domain, where the design variable is defined, is set to be those two bilateral regions. To truncate the infinitive free space, the first-order absorbing boundary condition is imposed on the inlet $\left(\Gamma_{i}\right)$ and outlet $\left(\Gamma_{o}\right)$ boundaries of the computational domain, and the periodic boundary condition is imposed on the left $\left(\Gamma_{p s}\right)$ and right $\left(\Gamma_{p d}\right)$ boundaries of the slit to reduce the computational cost.

Based on the above computational setup, the inverse design problem is to find the geometrical configurations of the bilateral nanostructures for the preset slit to maximize the transmission of the electromagnetic energy. The propagating wave in the metallic slits is time-harmonic transverse magnetic wave governed by the twodimensional Maxwell’s equations. Those equations can be reformulated into the scalar Helmholtz equation together with the boundary conditions: \begin{aligned} &\nabla \cdot\left[\varepsilon_{r}^{-1} \nabla\left(H_{z s}+H_{z i}\right)\right]+k_{0}^{2} \mu_{r}\left(H_{z s}+H_{z i}\right)=0, \text { in } \Omega \ &\varepsilon_{r}^{-1} \nabla H_{z s} \cdot \mathbf{n}+j k_{0} \sqrt{\varepsilon_{r}^{-1} \mu_{r}} H_{z s}=0, \text { on } \Gamma_{i} \cup \Gamma_{o} \ &H_{z s}(\mathbf{x}+\mathbf{a})=H_{z s}(\mathbf{x}) e^{-j \mathbf{k} \cdot \mathbf{a}}, \mathbf{n}(\mathbf{x}+\mathbf{a}) \cdot \nabla H_{z s}(\mathbf{x}+\mathbf{a})=-e^{-j \mathbf{k} \cdot \mathbf{a}} \mathbf{n}(\mathbf{x}) \cdot \nabla H_{z s}(\mathbf{x}) \ &\text { for } \forall \mathbf{x} \in \Gamma_{p s}, \mathbf{x}+\mathbf{a} \in \Gamma_{p d} \end{aligned}
where the scattering-field formulation, with $H_{z}=H_{z s}+H_{z i}$, is used to reduce the dispersion error; $H_{z s}$ and $H_{z i}$ are the scattering and incident fields, respectively; $\varepsilon_{r}$ and $\mu_{r}$ are the relative permittivity and permeability, respectively; $k_{0}=\omega \sqrt{\varepsilon_{0} \mu_{0}}$ is the free space wave number with $\omega, \varepsilon_{0}$ and $\mu_{0}$ representing the angular frequency, free space permittivity and permeability, respectively; $\Omega$ is the computational domain; $\mathbf{k}$ is the wave vector;, the time dependence of the fields is given by the factor $e^{j \text { wot }}$, with $t$ representing the time; $\mathbf{n}$ is the unit outward normal vector at $\partial \Omega ; j=\sqrt{-1}$ is the imaginary unit; $\Gamma_{i}$ and $\Gamma_{o}$ are the inlet and outlet boundaries of the photonic energy, respectively; and $\Gamma_{p s}$ and $\Gamma_{p d}$ are respectively the source and destination boundary of the periodic boundary pair, with a lattice vector a. The incident field $H_{z i}$ is set to be the parallel-plane wave with unit amplitude.

## 数学代写|拓扑学代写Topology代考|Nanostructures for Localized Surface Plasmonic

Ĵ=1F和0|和|4和04|X=X0=1F和0∫Ω|和|4和04d(距离⁡(X,X0))dΩ其中增强因子归一化为F和0; 和F和0是增强因子X0，对应于金属材料的纳米结构完全填充了设计域；X0是合理选择的增强位置Ω;d(∗)是狄拉克函数；距离(X,X0) 是点之间的欧几里得距离∀X∈Ω和指定的位置X0. 增强位置X0应该呈现在纳米结构的表面或耦合位置，因为在局部表面等离子体共振中，最大增强因子必须在金属表面或耦合位置。

## 数学代写|拓扑学代写Topology代考|Modeling

∇⋅[er−1∇(H和s+H和一世)]+ķ02μr(H和s+H和一世)=0, 在 Ω er−1∇H和s⋅n+jķ0er−1μrH和s=0, 上 Γ一世∪Γ○ H和s(X+一个)=H和s(X)和−jķ⋅一个,n(X+一个)⋅∇H和s(X+一个)=−和−jķ⋅一个n(X)⋅∇H和s(X)  为了 ∀X∈Γps,X+一个∈Γpd

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。