如果你也在 怎样代写概率论Probability theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。
概率论是与概率有关的数学分支。虽然有几种不同的概率解释,但概率论以严格的数学方式处理这一概念,通过一套公理来表达它。
statistics-lab™ 为您的留学生涯保驾护航 在代写概率论Probability theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写概率论Probability theory代写方面经验极为丰富,各种代写概率论Probability theory相关的作业也就用不着说。
我们提供的概率论Probability theory及其相关学科的代写,服务范围广, 其中包括但不限于:
- Statistical Inference 统计推断
- Statistical Computing 统计计算
- Advanced Probability Theory 高等概率论
- Advanced Mathematical Statistics 高等数理统计学
- (Generalized) Linear Models 广义线性模型
- Statistical Machine Learning 统计机器学习
- Longitudinal Data Analysis 纵向数据分析
- Foundations of Data Science 数据科学基础
数学代写|概率论代写Probability theory代考|Mechanism of Creep Behavior for Soft Soil
The behavior of soft soil is viscous, which results in time effects and strain rate effects. The creep behavior refers to the soil deformation with time under a constant effective stress. In the early days, it is often referred to as “secondary consolidation”. Research has shown the existence of creep deformation in soft soils, and it is more obvious for the soils with lower permeability.
Creep behavior of soft soil has been considered as a challenging topic for engineers and researchers for several decades. An appropriate model is required for predicting the long-term settlement of soils. Le et al. [108] reviewed the five causes for soil creep:
(a) the breakdown of interparticle bonds [109]; (b) jumping of molecule bonds [110];
(c) sliding among particles [111]; (d) water flows in a double-pore system [112] and
(e) structural viscosity $[113,114]$.
Moreover, the mechanism of creep deformation can also be explained from the views of macro and micro deformation of soil, and this explanation is directly related to the study of settlement prediction [115]. In the macroscopic view, creep deformation is a result of soil structure rearrangement to reach a new equilibrium under the action of external force. In the microscopic view, creep deformation is considered as the deformation of microstructure caused by the drainage of adsorbed water or its structural viscosity. It is also suggested that the creep deformation will cease when there is no free water in the soil.
数学代写|概率论代写Probability theory代考|Time-Dependent Model for Creep Analysis
The time-dependent stress-strain behavior of soft soils has been investigated through the laboratory studies by the scholars [114-121]. In order to describe the viscous nature of soils, the strain rates were utilized in the models $[118,122]$. A lot of work has been done by some researchers to model the time-dependent behavior under onedimensional straining in oedometer tests $[114,118,123]$. The models for describing the time-dependent behavior under both triaxial stress states and general stress states have also been developed [124-126].
Most of the time-dependent constitutive models are based on Perzyna’s overstress theory $[128,129]$. These models can be classified into two categories: conventional overstress models and extended overstress models. The conventional overstress models assume that only elastic strains occur when the stress state is inside of the static yield surface [130-133]. The extended overstress models assume that the viscoplastic strains occur even though the stress state is located within the static yield surface [125, 127, 134,135]. The hypothesis of the conventional overstress model has been proved to be in conflict with the experimental results, and the associated viscosity parameters cannot be determined easily through the low loading-rate tests. In contrast, the parameters of soil viscosity involved in the extended overstress models can be determined straightforward based on the constant strain-rate tests or conventional oedometer tests.
At present, some elastic viscoplastic models have been developed to incorporate the anisotropy and destructuration in the description of the stress-strain-time behavior of natural soft clays. Rocchi [136] used the concepts of initial natural yield locus and intrinsic reference yield locus and the overstress theory to consider the generation of viscoplastic strain and proposed a viscoplastic model that can incorporate the strain-rate dependence and destruction process. Kimoto and Oka [135] developed a rate-dependent model to consider the destructuration and inherent anisotropy, and the stress-induced anisotropy has not been considered. Based on the isotropic creep model by Vermeer and Neher [127], Leoni et al. [137] proposed an anisotropic model. Yin et al. [138-140141, 142] have conducted extensive work to model the strain-rate-dependency behavior of natural soft soil. The final version of their models can describe the initial anisotropy, induced anisotropy, destructuration and time-dependence simultaneously [143]. Yao et al. [144] proposed a modified unified-hardening model to describe the deformation of overconsolidated clays and discussed its potential of taking into account anisotropy and structural effects.
数学代写|概率论代写Probability theory代考|Bjerrum’s Time Line Conceptual Model
Buisman [145] first modeled the effect of time on the compression of clay by introducing the term of secondary compression. Taylor and Merchant [109] later reported that one-dimensional compression of clay should be described using a family of
curves, called “time lines”, and each curve corresponds to a specific loading duration in a standard oedometer test. One implication of time lines is that the magnitude of preconsolidation pressure is different for each line. Bjerrum [114] has same observations and suggested to use the parallel lines to model the delayed compression in a $e$ – log $\sigma_{2}^{\prime}$ diagram. The parallel lines represent a series of equilibrium relationships after different durations of sustained loading.
Bjerrum’s time line model is illustrated in Fig. $1.4$ for “young” and “aged” normally consolidation ( $\mathrm{NC}$ ) clays. Young NC clays denote the deposit sediments that reach equilibrium under their own weight without experiencing the delayed compression, whereas aged NC clays have undergone substantially delayed compression at constant loading. The compression of undisturbed samples of young and aged NC clays subjected to the uniaxial consolidation is presented in two bold curves in the figure. The upper curve shows the compression behavior of the young $\mathrm{NC}$ clay, and its preconsolidation pressure $\sigma_{z, p c}^{\prime}$ is equal to $\sigma_{z, 0}^{\prime}$, that is the present vertical effective stress. Under this effective stress for 10,000 years, the young NC clay will develop the delayed compression. The compression of aged NC clay follows the lower curve, and its apparent preconsolidation pressure increases to $\sigma_{z, 1}^{\prime}$, which is caused by aging rather than by previous overloading. This implies that the reduction of void ratio caused by the delayed compression will lead to a more stable clay structure and then a larger preconsolidation pressure. It can be seen that the Bjerrum’s time line model provides a better understanding of the apparent preconsolidation pressures that resulted from aging.
概率论代考
数学代写|概率论代写Probability theory代考|Mechanism of Creep Behavior for Soft Soil
软土的行为是粘性的,这导致了时间效应和应变率效应。蠕变行为是指在恒定有效应力下土体随时间的变形。在早期,它通常被称为“二次巩固”。研究表明,软土中存在蠕变变形,在渗透性较低的土壤中更为明显。
几十年来,软土的蠕变行为一直被认为是工程师和研究人员面临的一个具有挑战性的课题。需要一个合适的模型来预测土壤的长期沉降。乐等人。[108] 回顾了土壤蠕变的五个原因:
(a)颗粒间键的破坏 [109];(b) 分子键的跳跃[110];
(c) 粒子之间的滑动[111];(d) 双孔系统中的水流 [112] 和
(e) 结构粘度[113,114].
而且,蠕变变形的机理也可以从土体的宏观变形和微观变形的角度来解释,而这种解释直接关系到沉降预测的研究[115]。从宏观上看,蠕变变形是土体结构在外力作用下重新排列达到新平衡的结果。在微观上,蠕变变形被认为是由于吸附水的排出或其结构粘度引起的微观结构变形。还建议当土壤中没有自由水时,蠕变变形将停止。
数学代写|概率论代写Probability theory代考|Time-Dependent Model for Creep Analysis
学者们通过实验室研究研究了软土的时变应力-应变行为[114-121]。为了描述土壤的粘性,模型中使用了应变率[118,122]. 一些研究人员已经做了大量工作来模拟在 oedometer 测试中的一维应变下的时间相关行为[114,118,123]. 还开发了用于描述三轴应力状态和一般应力状态下随时间变化的行为的模型 [124-126]。
大多数时间相关的本构模型都是基于 Perzyna 的过应力理论[128,129]. 这些模型可以分为两类:常规过应力模型和扩展过应力模型。传统的过应力模型假设只有弹性应变发生在应力状态位于静态屈服面内时 [130-133]。扩展过应力模型假设即使应力状态位于静态屈服面内,也会发生粘塑性应变 [125, 127, 134,135]。传统过应力模型的假设已被证明与实验结果相矛盾,相关的粘度参数无法通过低加载率试验轻易确定。相比之下,扩展过应力模型中涉及的土壤粘度参数可以根据恒定应变率测试或传统的测得仪测试直接确定。
目前,已经开发了一些弹性粘塑性模型,将各向异性和破坏结合到描述天然软粘土的应力-应变-时间行为中。Rocchi [136] 使用初始自然屈服轨迹和内在参考屈服轨迹的概念和过应力理论来考虑粘塑性应变的产生,并提出了一种可以结合应变率依赖性和破坏过程的粘塑性模型。Kimoto 和 Oka [135] 开发了一个速率依赖模型来考虑破坏和固有的各向异性,并且没有考虑应力引起的各向异性。基于 Vermeer 和 Neher [127] 的各向同性蠕变模型,Leoni 等人。[137]提出了一个各向异性模型。尹等人。[138-140141, 142]已经进行了大量工作来模拟天然软土的应变率依赖性行为。他们模型的最终版本可以同时描述初始各向异性、诱导各向异性、破坏和时间依赖性[143]。姚等人。[144] 提出了一种改进的统一硬化模型来描述超固结粘土的变形,并讨论了其考虑各向异性和结构效应的潜力。
数学代写|概率论代写Probability theory代考|Bjerrum’s Time Line Conceptual Model
Buisman [145] 首先通过引入二次压缩项来模拟时间对粘土压缩的影响。Taylor 和 Merchant [109] 后来报道说,粘土的一维压缩应该用一个族来描述
曲线,称为“时间线”,每条曲线对应于标准里程计测试中的特定加载持续时间。时间线的一个含义是每条线的预固结压力大小不同。Bjerrum [114] 有相同的观察结果,并建议使用平行线来模拟延迟压缩和- 日志σ2′图表。平行线代表不同持续加载持续时间后的一系列平衡关系。
Bjerrum 的时间线模型如图 1 所示。1.4对于“年轻”和“老年”通常合并(ñC) 粘土。年轻的 NC 粘土表示沉积物沉积物在自身重量下达到平衡而没有经历延迟压缩,而老化的 NC 粘土在恒定载荷下经历了显着延迟的压缩。经受单轴固结的年轻和老化 NC 粘土的原状样品的压缩在图中以两条粗线表示。上面的曲线显示了年轻的压缩行为ñC粘土及其预固结压力σ和,pC′等于σ和,0′,即当前垂直有效应力。在这种 10000 年的有效应力下,年轻的 NC 粘土将发展延迟压缩。老化 NC 粘土的压缩遵循较低的曲线,其表观预固结压力增加到σ和,1′,这是由于老化而不是先前的超载引起的。这意味着延迟压缩引起的孔隙比降低会导致粘土结构更加稳定,从而导致预固结压力增大。可以看出,Bjerrum 的时间线模型更好地理解了老化导致的明显的预固结压力。
统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。
金融工程代写
金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。
非参数统计代写
非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。
广义线性模型代考
广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。
术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。
有限元方法代写
有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。
有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。
tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。
随机分析代写
随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
时间序列分析代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。
回归分析代写
多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。