### 数学代写|离散数学作业代写discrete mathematics代考|Compactness Principle

statistics-lab™ 为您的留学生涯保驾护航 在代写离散数学discrete mathematics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写离散数学discrete mathematics代写方面经验极为丰富，各种代写离散数学discrete mathematics相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 数学代写|离散数学作业代写discrete mathematics代考|Compactness Principle

There is an interplay between finite and infinite Ramsey theory. While much of this book focuses on finite Ramsey theory, we can use the infinite to prove the finite. This is accomplished by the Compactness Principle, which we state below.

Compactness Principle. Let $\mathcal{F}$ be a family of finite subsets of $\mathbb{Z}^{+}$. Let $k, r \in \mathbb{Z}^{+}$. Assume that every $r$-coloring of the $k$-element subsets of $\mathbb{Z}^{+}$admits $F \in \mathcal{F}$ with the property that all $k$-element subsets of $F$ have the same color. Then there exists $N \in \mathbb{Z}^{+}$such that for all $n \geq N$, any $r$-coloring of the $k$ element subsets of $[1, n]$ admits $G \in \mathcal{F}$ with $G \subseteq[1, n]$ such that the collection of $k$-element subsets of $G$ is monochromatic.

This result can be used at times to bypass technical details in proofs. Since many Ramsey theory results are about having “large enough” systems, when dealing with the set of integers we often encounter statements of the form “for all $n \geq N$, property $P$ holds.” If we can show that property $P$ holds over the positive integers, then the Compactness Principle gives us the “for all $n \geq N “$ part of the statement.

The proof of the Compactness Principle is essentially Cantor’s argument for proving that the set of real numbers is uncountable; the reader is referred to $[129]$ for a proof.

A word of warning is warranted here. The Compactness Principle does not work in reverse; that is, we cannot prove the finite version and conclude that it holds for the infinite. As we will see, results on infinite sets can run counter to their finite counterparts. Just keep in mind that arbitrarily large does not mean infinite.

## 数学代写|离散数学作业代写discrete mathematics代考|Set Theoretic Considerations

We will be focusing our attention on countable objects; however, Ramsey theory is also studied over uncountable sets. We can ask, for example, do similar results hold if we color $\mathbb{R}^{+}$instead of $\mathbb{Z}^{+} ?$ When doing so, the Axiom of Choice (or one of its equivalents) may come into play. We will largely (but not always) stay away from this uncountable territory; see [117] for a recent treatment of Ramsey theory in the uncountable setting.

We will note here that, like the Banach-Tarski paradox, we get some strange results in the uncountable setting. Consider the set of infinite subsets of $\mathbb{Z}^{+}$, denoted by $\mathcal{P}$. Assume that each $P \in \mathcal{P}$ is assigned one of two colors. In order for $\mathcal{P}$ to have the Ramsey property, we would require that

under every possible 2 -coloring $\chi$ of the elements of $\mathcal{P}$, there exists an infinite set $S \in \mathcal{P}$ such that all infinite subsets of $S$ have the same color under $\chi$.
As noted by Galvin and Prikry [79], both of the following hold:
(i) assuming the Axiom of Choice is true (so that there exist subsets of $\mathbb{R}$ that are non-measurable), Erdôs and Rado [68] have provided a 2 coloring of the elements of $\mathcal{P}$ such that no infinite set has all infinite subsets the same color;
(ii) assuming the Axiom of Choice is false and that all subsets of $\mathbb{R}$ are measurable, Mathias [142] has shown that under any 2-coloring of the elements of $\mathcal{P}$ there exists an infinite set that has all infinite subsets the same color.

By restricting ourselves to countable sets, we will focus on the Ramseytheoretic content of the material and not on the set-theoretic aspects, which, as we see above, can lead to “paradoxical” results.

There are a few instances in this book where we do appeal to the Axiom of Choice in the equivalent form of Zorn’s Lemma, which we now state.

Zorn’s Lemma. If every chain in a partially ordered set $S$ has an upper bound (respectively, lower bound) in $S$, then $S$ contains a maximal (respectively, minimal) element.

## 数学代写|离散数学作业代写discrete mathematics代考|Exercises

$1.1$ Show that
$$\left(1+\frac{x}{n}\right)^{n} \approx e^{x}$$
for large $n$.
$1.2$ Let $k, n \in \mathbb{Z}^{+}$be large, with $n \gg k$. Show that
$$\left(\begin{array}{l} n \ k \end{array}\right) \approx \frac{1}{\sqrt{2 \pi k}} \cdot\left(\frac{n e}{k}\right)^{k}$$
$1.3$ Consider the $k$-element sets of $[1, n]$. If we color each integer in $[1, n]$ randomly with one of $r$ colors, what is the probability that a particular $k$-element set is monochromatic? What is the probability that at least one of the $k$-element sets is monochromatic if $n>r(k-1)$ ?
$1.4$ Show that for any $n+1$ integers chosen from ${1,2, \ldots, 2 n}$, two of the chosen integers have the property that one divides the other.

$1.5$ Let $n \in \mathbb{Z}^{+}$and consider a set $S$ of $n$ integers, none of which are divisible by $n$. Show that there exists a subset $\emptyset \neq T \subseteq S$ such that $n$ divides $\sum_{t \in T} t$.
$1.6$ Let $n \in \mathbb{Z}^{+}$. Show that there are two powers of two that differ by a multiple of $n$.
$1.7$ This is a gem due to Erdôs and Szekeres [70]. Let $n, m \in \mathbb{Z}^{+}$. Prove that every sequence of $n m+1$ distinct numbers contains either an increasing subsequence of length $n+1$ or a decreasing subsequence of length $m+1$.
Hint:
For each number in the sequence let $\ell_{i}$ be the length of the longest increasing subsequence starting at the $i^{\text {th }}$ term.
$1.8$ How many arithmetic progressions of length 3 are contained in $[1, n]$ ? How many of length $k$ ?
$1.9$ Let $S$ be a set with $|S|=n$. Let $F$ be the set of bijections from $S$ to $S$ such that for $f \in F$ we have $f(s) \neq s$ for all $s \in S$. Use the Principle of Inclusion-Exclusion to show that $|F|$ is the integer nearest $\frac{n !}{e}$.
$1.10$ For $t \in \mathbb{Z}{n}$, let $$\chi(t)=e^{\frac{2 \pi i t}{n}},$$ where $i=\sqrt{-1}$. Prove directly that, for $t \neq 0$ we have $$\sum{k=0}^{n-1} \chi(k t)=0$$
$1.11$ Consider the function $f$ defined on $\mathbb{Z}{5}$ by $f(x)=x^{2}$. Find $\widehat{f}(t)$, the discrete Fourier transform of $f$, and verify (i) and (iii) of Theorem 1.9. $1.12$ Consider all infinite binary strings. For two strings $s{1} s_{2} s_{3} \ldots$ and $t_{1} t_{2} t_{3} \ldots$, let $n$ be the minimal positive integer for which $s_{n} \neq t_{n}$. Show that $d(s, t)=2^{-n}$ defines a metric on the space of infinite binary strings.
1.13 Prove that Corollary $1.7$ follows from Lemma 1.6.
$1.14$ Let $n \in \mathbb{Z}^{+}$. Let $S$ be a strict subspace of $\mathbb{Q}^{n}$. Define $S^{\perp}$ to be the orthogonal complement of $S$. Describe $S^{\perp}$ and prove that every element of $\mathbb{Q}^{n}$ can be written as $s+s^{\perp}$ for some $s \in S$ and $s^{\perp} \in S^{\perp}$.
$1.15$ Let $p$ be prime and let $n \in \mathbb{Z}^{+}$. How many $x \in{1,2, \ldots, p-1}$ satisfy $x^{n} \equiv 1(\bmod p) ?$

## 数学代写|离散数学作业代写discrete mathematics代考|Set Theoretic Considerations

（i）假设选择公理是正确的（因此存在R是不可测量的），Erdôs 和 Rado [68] 提供了 2 种颜色的元素磷使得没有无限集的所有无限子集都具有相同的颜色；
(ii) 假设选择公理是错误的并且所有子集R是可测量的，Mathias [142] 表明，在元素的任何 2 着色下磷存在一个无限集，它的所有无限子集都具有相同的颜色。

## 数学代写|离散数学作业代写discrete mathematics代考|Exercises

1.1显示
(1+Xn)n≈和X

1.2让ķ,n∈从+大，有n≫ķ. 显示
(n ķ)≈12圆周率ķ⋅(n和ķ)ķ
1.3考虑ķ-元素集[1,n]. 如果我们为每个整数着色[1,n]随机与其中之一r颜色，一个特定的概率是多少ķ-元素集是单色的？至少有一个的概率是多少ķ- 元素集是单色的，如果n>r(ķ−1) ?
1.4显示任何n+1从中选择的整数1,2,…,2n，两个选定的整数具有一个除另一个的性质。

1.5让n∈从+并考虑一个集合小号的n整数，其中任何一个都不能被n. 证明存在一个子集∅≠吨⊆小号这样n划分∑吨∈吨吨.
1.6让n∈从+. 证明有两个相差 的倍数的 2 的幂n.
1.7这是 Erdôs 和 Szekeres [70] 的瑰宝。让n,米∈从+. 证明每一个序列n米+1不同的数字包含一个增加的长度子序列n+1或长度递减的子序列米+1.

1.8长度为 3 的等差数列包含多少个[1,n]? 多少长ķ ?
1.9让小号与|小号|=n. 让F是来自的双射集小号到小号这样对于F∈F我们有F(s)≠s对全部s∈小号. 使用包含-排除原理来证明|F|是最接近的整数n!和.
1.10为了吨∈从n， 让χ(吨)=和2圆周率一世吨n,在哪里一世=−1. 直接证明，对于吨≠0我们有∑ķ=0n−1χ(ķ吨)=0
1.11考虑函数F定义于从5经过F(X)=X2. 寻找F^(吨), 的离散傅里叶变换F，并验证定理 1.9 的 (i) 和 (iii)。1.12考虑所有无限的二进制字符串。对于两个字符串s1s2s3…和吨1吨2吨3…， 让n是最小的正整数sn≠吨n. 显示d(s,吨)=2−n定义无限二进制字符串空间的度量。
1.13 证明推论1.7遵循引理 1.6。
1.14让n∈从+. 让小号是一个严格的子空间问n. 定义小号⊥是的正交补小号. 描述小号⊥并证明每个元素问n可以写成s+s⊥对于一些s∈小号和s⊥∈小号⊥.
1.15让p成为素数并让n∈从+. 多少X∈1,2,…,p−1满足Xn≡1(反对p)?

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。