### 数学代写|编码理论代写Coding theory代考|ELEC7604

statistics-lab™ 为您的留学生涯保驾护航 在代写编码理论Coding theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写编码理论Coding theory代写方面经验极为丰富，各种代写编码理论Coding theory相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 数学代写|编码理论代写Coding theory代考|Notation and Introduction

A brief introduction to cyclic codes over finite fields was given in Section 1.12. The objective of this chapter is to introduce several important families of cyclic codes over finite fields. We will follow the notation of Chapter 1 as closely as possible.

By an $[n, \kappa, d]{q}$ code, we mean a linear code over $\mathbb{F}{q}$ with length $n$, dimension $\kappa$ and minimum distance $d$. Notice that the minimum distance of a linear code is equal to the minimum nonzero weight of the code. By the parameters of a linear code, we mean its length, dimension and minimum distance. An $[n, \kappa, d]{q}$ code is said to be distance-optimal (respectively dimension-optimal) if there is no $[n, \kappa, d+1]{q}$ (respectively $[n, \kappa+1, d]{q}$ ) code. By the best known parameters of $[n, \kappa]$ linear codes over $\mathbb{F}{q}$ we mean an $[n, \kappa, d]_{q}$ code with the largest known $d$ reported in the tables of linear codes maintained at [845].

In this chapter, we deal with cyclic codes of length $n$ over $\mathbb{F}{q}$ and always assume that $\operatorname{gcd}(n, q)=1$. Under this assumption, $x^{n}-1$ has no repeated factors over $\mathbb{F}{q}$. Denote by $C_{i}$ the $q$-cyclotomic coset modulo $n$ that contains $i$ for $0 \leq i \leq n-1$. Put $m=\operatorname{ord}{n}(q)$, and let $\gamma$ be a generator of $\mathbb{F}{q^{m}}^{*}:=\mathbb{F}{q^{m}} \backslash{0}$. Define $\alpha=\gamma^{\left(q^{m}-1\right) / n}$. Then $\alpha$ is a primitive $n^{\text {th }}$ root of unity. The canonical factorization of $x^{n}-1$ over $\mathbb{F}{q}$ is given by
$$x^{n}-1=M_{\alpha^{i_{0}}}(x) M_{\alpha^{i_{1}}}(x) \cdots M_{\alpha^{i_{t}}}(x),$$

where $i_{0}, i_{1}, \ldots, i_{t}$ are representatives of the $q$-cyclotomic cosets modulo $n$, and
$$M_{\alpha^{i_{j}}}(x)=\prod_{h \in C_{i_{j}}}\left(x-\alpha^{h}\right)$$
which is the minimal polynomial of $\alpha^{i_{j}}$ over $\mathbb{F}{q}$ and is irreducible over $\mathbb{F}{q \text { : }}$.
Throughout this chapter, we define $\mathcal{R}{(n, q)}=\mathbb{F}{q}[x] /\left\langle x^{n}-1\right\rangle$ and use $\operatorname{Tr}{q^{m} / q}$ to denote the trace function from $F{q^{m}}$ to $F_{q}$ defined by $\operatorname{Tr}{q^{m} / q}(x)=\sum{j=0}^{m-1} x^{q^{j}}$. The ring of integers modulo $n$ is denoted by $\mathbb{Z}_{n}={0,1, \ldots, n-1}$.

Cyclic codes form an important subclass of linear codes over finite fields. Their algebraic structure is richer. Because of their cyclic structure, they are closely related to number theory. In addition, they have efficient encoding and decoding algorithms and are the most studied linear codes. In fact, most of the important families of linear codes are either cyclic codes or extended cyclic codes.

## 数学代写|编码理论代写Coding theory代考|Subfield Subcodes

Let $\mathcal{C}$ be an $[n, \kappa]{q^{\pm}}$code. The subfield subcode $\left.\mathcal{C}\right|{\mathbb{F}{q}}$ of $\mathcal{C}$ with respect to $\mathbb{F}{q}$ is the set of codewords in $\mathcal{C}$ each of whose components is in $\mathbb{F}{q}$. Since $\mathcal{C}$ is linear over $\mathbb{F}{q^{2}},\left.\mathcal{C}\right|{\mathbb{F}{q}}$ is a linear code over $\mathbb{F}_{q}$.

The dimension, denoted $\kappa_{q}$, of the subfield subcode $\left.\mathcal{C}\right|{F{q}}$ may not have an elementary relation with that of the code $\mathcal{C}$. However, we have the following lower and upper bounds on $\kappa_{q}$.

Theorem 2.2.1 Let $\mathcal{C}$ be an $[n, \kappa]{q^{t}}$ code. Then $\left.\mathcal{C}\right|{\mathbb{F}{q}}$ is an $\left[n, \kappa{q}\right]$ code over $\mathbb{F}{q}$, where $\kappa \geq \kappa{q} \geq n-t(n-\kappa)$. If $\mathcal{C}$ has a basis of codewords in $\mathbb{F}{q}^{n}$, then this is also a basis of $\left.\mathcal{C}\right|{\mathbb{F}{q}}$ and $\left.\mathcal{C}\right|{F_{q}}$ has dimension $\kappa$.

Example 2.2.2 The Hamming code $\mathcal{H}{3,2^{2}}$ over $\mathbb{F}{2^{2}}$ has parameters $[21,18,3]{4}$. The subfield subcode $\left.\mathcal{H}{3,2^{2}}\right|{\mathbb{F}{2}}$ is a $[21,16,3]{2}$ code with parity check matrix $$\left[\begin{array}{lllllllllllllllllllll} 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \end{array}\right] .$$ In this case, $n=21, \kappa=18$, and $n-t(n-\kappa)=15$. Hence $\kappa{q}=16$, which is very close to $n-t(n-\kappa)=15$.

The following is called Delsarte’s Theorem, which exhibits a dual relation between subfield subcodes and trace codes. This theorem is very useful in the design and analysis of linear codes.
Theorem 2.2.3 (Delsarte) Let $\mathcal{C}$ be a linear code of length $n$ over $\mathbb{F}{q^{*}}$. Then $$\left(\left.\mathcal{C}\right|{F_{q}}\right)^{\perp}=\operatorname{Tr}{q^{t} / q}\left(\mathcal{C}^{\perp}\right),$$ where $\operatorname{Tr}{q^{t} / q}\left(\mathcal{C}^{\perp}\right)=\left{\left(\operatorname{Tr}{q^{t} / q}\left(v{1}\right), \ldots, \operatorname{Tr}{q^{t} / q}\left(v{n}\right)\right) \mid\left(v_{1}, \ldots, v_{n}\right) \in \mathcal{C}^{\perp}\right}$.
Theorems $2.2 .1$ and $2.2 .3$ work for all linear codes, including cyclic codes. Their proofs could be found in [1008, Section 3.8]. We shall need them later.

## 数学代写|编码理论代写Coding theory代考|Fundamental Constructions of Cyclic Codes

In Section 1.12, it was shown that every cyclic code of length $n$ over $\mathbb{F}{q}$ can be generated by a generator polynomial $g(x) \in F{q}[x]$. The objective of this section is to describe several other fundamental constructions of cyclic codes over finite fields. By a fundamental construction, we mean a construction method that can produce every cyclic code over any finite field.

An element $e$ in a commutative ring $\mathcal{R}$ is called an idempotent if $e^{2}=e$. The ring $\mathcal{R}{(n, q)}$ has in general quite a number of idempotents. Besides its generator polynomial, many other polynomials can generate a cyclic code $\mathcal{C}$. Let $\mathcal{C}$ be a cyclic code over $\mathbb{F}{q}$ with generator polynomial $g(x)$. It is easily seen that a polynomial $f(x) \in \mathbb{F}_{q}[x]$ generates $\mathcal{C}$ if and only if $\operatorname{gcd}\left(f(x), x^{n}-1\right)=g(x)$.

If an idempotent $e(x) \in \mathcal{R}{(n, q)}$ generates a cyclic code $\mathcal{C}$, it is then unique in this ring and called the generating idempotent. Given the generator polynomial of a cyclic code, one can compute its generating idempotent with the following theorem [1008, Theorem 4.3.3]. Theorem 2.3.1 Let $\mathcal{C}$ be a cyclic code of length $n$ over $\mathbb{F}{q}$ with generator polynomial $g(x)$. Let $h(x)=\left(x^{n}-1\right) / g(x)$. Then $\operatorname{gcd}(g(x), h(x))=1$, as it was assumed that $\operatorname{gcd}(n, q)=1$. Employing the Extended Euclidean Algorithm, one computes two polynomials a $(x) \in \mathbb{F}{q}[x]$ and $b(x) \in \mathbb{F}{q}[x]$ such that $1=a(x) g(x)+b(x) h(x)$. Then $e(x)=a(x) g(x) \bmod \left(x^{n}-1\right)$ is the generating idempotent of $\mathcal{C}$.

The polynomial $h(x)$ in Theorem $2.3 .1$ is called the parity check polynomial of $\mathcal{C}$. Given the generating idempotent of a cyclic code, one obtains the generator polynomial of this code as follows [1008, Theorem 4.3.3].

Theorem 2.3.2 Let $\mathcal{C}$ be a cyclic code over $\mathbb{F}{q}$ with generating idempotent e(x). Then the generator polynomial of $\mathcal{C}$ is given by $g(x)=\operatorname{gcd}\left(e(x), x^{n}-1\right)$, which is computed in $\mathbb{F}{q}[x]$.
Example 2.3.3 The cyclic code $\mathcal{C}$ of length 11 over $\mathbb{F}_{3}$ with generator polynomial $g(x)=$ $x^{5}+x^{4}+2 x^{3}+x^{2}+2$ has parameters $[11,6,5]$ and parity check polynomial $h(x)=x^{6}+$ $2 x^{5}+2 x^{4}+2 x^{3}+x^{2}+1 .$

Let $a(x)=2 x^{5}+x^{4}+x^{2}$ and $b(x)=x^{4}+x^{3}+1$. It is then easily verified that $1=$ $a(x) g(x)+b(x) h(x)$. Hence
$$e(x)=a(x) g(x) \bmod \left(x^{11}-1\right)=2 x^{10}+2 x^{8}+2 x^{7}+2 x^{6}+2 x^{2}$$
which is the generating idempotent of $\mathcal{C}$. On the other hand, we have $g(x)=\operatorname{gcd}\left(e(x), x^{11}-\right.$ 1).

A generator matrix of a cyclic code can be derived from its generating idempotent as follows [1008, Theorem 4.3.6].

## 数学代写|编码理论代写Coding theory代考|Notation and Introduction

1.12 节简要介绍了有限域上的循环码。本章的目的是介绍有限域上几个重要的循环码族。我们将尽可能地遵循第 1 章的符号。

Xn−1=米一个一世0(X)米一个一世1(X)⋯米一个一世吨(X),

## 数学代写|编码理论代写Coding theory代考|Subfield Subcodes

[100110011001111001101 010010110011010011001 001100110011001100110 000001111000000001111 000000000111111110000].在这种情况下，n=21,ķ=18， 和n−吨(n−ķ)=15. 因此ķq=16, 非常接近n−吨(n−ķ)=15.

(C|Fq)⊥=Tr⁡q吨/q(C⊥),在哪里\operatorname{Tr}{q^{t} / q}\left(\mathcal{C}^{\perp}\right)=\left{\left(\operatorname{Tr}{q^{t} / q }\left(v{1}\right), \ldots, \operatorname{Tr}{q^{t} / q}\left(v{n}\right)\right) \mid\left(v_{1 }, \ldots, v_{n}\right) \in \mathcal{C}^{\perp}\right}\operatorname{Tr}{q^{t} / q}\left(\mathcal{C}^{\perp}\right)=\left{\left(\operatorname{Tr}{q^{t} / q }\left(v{1}\right), \ldots, \operatorname{Tr}{q^{t} / q}\left(v{n}\right)\right) \mid\left(v_{1 }, \ldots, v_{n}\right) \in \mathcal{C}^{\perp}\right}.

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。