数学代写|表示论代写Representation theory代考|MATH5735

如果你也在 怎样代写表示论Representation theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

表示论是数学的一个分支,它通过将抽象代数结构的元素表示为向量空间的线性变换来研究抽象代数结构,并研究这些抽象代数结构上的模块。[1][2]实质上,表示通过用矩阵及其代数运算(例如,矩阵加、矩阵乘)来描述其元素,使抽象代数对象更加具体。矩阵和线性运算符的理论已被充分理解,因此用熟悉的线性代数对象来表示更抽象的对象有助于收集属性,有时还能简化更抽象理论的计算。

statistics-lab™ 为您的留学生涯保驾护航 在代写表示论Representation theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写表示论Representation theory代写方面经验极为丰富,各种代写表示论Representation theory相关的作业也就用不着说。

我们提供的表示论Representation theory及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|表示论代写Representation theory代考|MATH5735

数学代写|表示论代写Representation theory代考|Symmetric Group Actions

There is a natural left action of $S_{n}$ on an arbitrary $n$-tuple of objects $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ :
$$
\sigma\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\left(\lambda_{\sigma^{-1}(1)}, \ldots, \lambda_{\sigma^{-1}(n)}\right), \quad \sigma \in S_{n}
$$
Also, given $V=V_{0} \oplus V_{\overline{1}}$ a vector superspace with parity $p$, we have a linear left action of the symmetric group $S_{n}$ on the tensor product $V^{\otimes n}\left(\sigma \in S_{n}, v_{1}, \ldots, v_{n} \in\right.$ $V)$ :
$$
\sigma\left(v_{1} \otimes \cdots \otimes v_{n}\right):=\epsilon_{v}(\sigma) v_{\sigma^{-1}(1)} \otimes \cdots \otimes v_{\sigma^{-1}(n)}
$$
where, following the Koszul-Quillen rule,
$$
\epsilon_{v}(\sigma):=\prod_{i\sigma(j)}(-1)^{p\left(v_{i}\right) p\left(v_{j}\right)}
$$

In particular, if $V$ is purely even $\epsilon_{v}(\sigma)=1$, while if $V$ is purely odd $\epsilon_{v}(\sigma)=$ $\operatorname{sign}(\sigma)$. The corresponding right action of $S_{n}$ on the space $\operatorname{Hom}\left(V^{\otimes n}, V\right)$ is given by $\left(f \in \operatorname{Hom}\left(V^{8 n}, V\right), \sigma \in S_{n}\right)$ :
$$
f^{\sigma}\left(v_{1} \otimes \cdots \otimes v_{n}\right)=f\left(\sigma\left(v_{1} \otimes \cdots \otimes v_{n}\right)\right)
$$

数学代写|表示论代写Representation theory代考|Composition of Permutations and Shuffles

Let $n \geq 1$ and $m_{1}, \ldots, m_{n} \geq 0$. We introduce the following notation:
$$
M_{0}=0 \text { and } M_{i}=\sum_{j=1}^{i} m_{j}, \quad i=1, \ldots, n
$$
Given $\sigma \in S_{n}$ and $\tau_{1} \in S_{m_{1}}, \ldots, \tau_{n} \in S_{m_{n}}$, we describe the composition
$$
\sigma\left(\tau_{1}, \ldots, \tau_{n}\right) \in S_{M_{n}}
$$
by saying how it acts on the tensor power $V^{\otimes M_{n}}$ of a vector space $V$ :
$$
\left(\sigma\left(\tau_{1}, \ldots, \tau_{n}\right)\right)\left(v_{1} \otimes \cdots \otimes v_{M_{n}}\right)=\sigma\left(\tau_{1}\left(v_{1} \otimes \cdots \otimes v_{M_{1}}\right) \otimes \cdots \otimes \tau_{n}\left(v_{M_{n-1}+1} \otimes \cdots \otimes v_{M_{n}}\right)\right)
$$
Definition 3.1 A permutation $\sigma \in S_{m+n}$ is called an ( $\left.m, n\right)$-shuffle if
$$
\sigma(1)<\cdots<\sigma(m), \quad \sigma(m+1)<\cdots<\sigma(m+n)
$$
The subset of $(m, n)$-shuffles is denoted by $S_{m, n} \subset S_{m+n}$.
Observe that, by definition, $S_{0, n}=S_{n, 0}={1}$ for every $n \geq 0$. If either $m$ or $n$ is negative, we set $S_{m, n}=\emptyset$ by convention.

数学代写|表示论代写Representation theory代考|n-Graphs

For an oriented graph $\Gamma$, we denoted by $V(\Gamma)$ the set of vertices of $\Gamma$, and by $E(\Gamma)$ the set of edges. We call $\Gamma$ an $n$-graph if $V(\Gamma)={1, \ldots, n}$. Denote by $\mathcal{G}(n)$ the set of all $n$-graphs without tadpoles, and by $\mathcal{G}{0}(n)$ the set of all acyclic $n$-graphs. An $n$-graph $L$ will be called an $n$-line, or simply a line, if its set of edges is of the form $\left{i{1} \rightarrow i_{2}, i_{2} \rightarrow i_{3}, \ldots, i_{n-1} \rightarrow i_{n}\right}$, where $\left{i_{1}, \ldots, i_{n}\right}$ is a permutation of ${1, \ldots, n}$.

We have a natural left action of $S_{n}$ on the set $\mathcal{G}(n)$ : for the $n$-graph $\Gamma$ and the permutation $\sigma$, the new $n$-graph $\sigma(\Gamma)$ is defined to be the same graph as $\Gamma$ but with the vertex which was labeled as $i$ relabeled as $\sigma(i)$, for every $i=1, \ldots, n$. So, if the $n$-graph $\Gamma$ has an oriented edge $i \rightarrow j$, then the $n$-graph $\sigma(\Gamma)$ has the oriented edge $\sigma(i) \rightarrow \sigma(j)$. Note that $S_{n}$ permutes the set of $n$-lines.

Let us recall the cocomposition of $n$-graphs, as described in [BDSHK19]. Given an $n$-tuple $\left(m_{1}, \ldots, m_{n}\right)$ of positive integers, let $M_{i}$ be as in (3.5). If $\Gamma \in \mathcal{G}\left(M_{n}\right)$, define $\Delta_{i}^{m_{1}, \ldots, m_{n}}(\Gamma) \in \mathcal{G}\left(m_{i}\right), i=1, \ldots, n$, to be the subgraph of $\Gamma$ associated with the set of vertices $\left{M_{i-1}+1, \ldots, M_{i}\right}$, relabeled as $\left{1, \ldots, m_{i}\right}$. Define also $\Delta_{0}^{m_{1}, \ldots, m_{n}}(\Gamma)$ to be the graph obtained from $\Gamma$ by collapsing the vertices and the edges of each $\Delta_{i}^{m_{1}, \ldots, m_{n}}(\Gamma)$ into a single vertex, relabeled as $i$. Then the cocomposition map is the map
$$
\begin{aligned}
\Delta^{m_{1}, \ldots, m_{n}}: \mathcal{G}\left(M_{n}\right) & \rightarrow \mathcal{G}(n) \times \mathcal{G}\left(m_{1}\right) \times \cdots \times \mathcal{G}\left(m_{n}\right) \
\Gamma & \mapsto\left(\Delta_{0}^{m_{1}, \ldots, m_{n}}(\Gamma), \Delta_{1}^{m_{1}, \ldots, m_{n}}(\Gamma), \ldots, \Delta_{n}^{m_{1}, \ldots, m_{n}}(\Gamma)\right)
\end{aligned}
$$

数学代写|表示论代写Representation theory代考|MATH5735

表示论代考

数学代写|表示论代写Representation theory代考|Symmetric Group Actions

有一个自然的左动作小号n在任意n- 对象元组(λ1,…,λn) :

σ(λ1,…,λn)=(λσ−1(1),…,λσ−1(n)),σ∈小号n
此外,鉴于在=在0⊕在1¯具有奇偶性的向量超空间p,我们有对称群的线性左作用小号n关于张量积在⊗n(σ∈小号n,在1,…,在n∈ 在) :

σ(在1⊗⋯⊗在n):=ε在(σ)在σ−1(1)⊗⋯⊗在σ−1(n)
其中,遵循 Koszul-Quillen 规则,

ε在(σ):=∏一世σ(j)(−1)p(在一世)p(在j)

特别是,如果在纯粹是偶数ε在(σ)=1, 而如果在纯粹是奇怪的ε在(σ)= 符号⁡(σ). 相应的正确动作小号n在空间上他⁡(在⊗n,在)是(谁)给的(F∈他⁡(在8n,在),σ∈小号n):

Fσ(在1⊗⋯⊗在n)=F(σ(在1⊗⋯⊗在n))

数学代写|表示论代写Representation theory代考|Composition of Permutations and Shuffles

让n≥1和米1,…,米n≥0. 我们引入以下符号:

米0=0 和 米一世=∑j=1一世米j,一世=1,…,n
给定σ∈小号n和τ1∈小号米1,…,τn∈小号米n,我们描述组成

σ(τ1,…,τn)∈小号米n
通过说它如何作用于张量幂在⊗米n向量空间的在:

(σ(τ1,…,τn))(在1⊗⋯⊗在米n)=σ(τ1(在1⊗⋯⊗在米1)⊗⋯⊗τn(在米n−1+1⊗⋯⊗在米n))
定义 3.1 一个排列σ∈小号米+n称为 (米,n)- 洗牌如果

σ(1)<⋯<σ(米),σ(米+1)<⋯<σ(米+n)
的子集(米,n)-shuffles 表示为小号米,n⊂小号米+n.
请注意,根据定义,小号0,n=小号n,0=1对于每个n≥0. 如果要么米或者n为负,我们设小号米,n=∅按照惯例。

数学代写|表示论代写Representation theory代考|n-Graphs

对于有向图Γ,我们表示为在(Γ)的顶点集Γ,并由和(Γ)边的集合。我们称之为Γ一个n-图如果在(Γ)=1,…,n. 表示为G(n)所有的集合n- 没有蝌蚪的图,并通过G0(n)所有非循环的集合n-图表。一个n-图形大号将被称为n-line,或者只是一条线,如果它的边集是形式\left{i{1} \rightarrow i_{2}, i_{2} \rightarrow i_{3}, \ldots, i_{n-1} \rightarrow i_{n}\right}\left{i{1} \rightarrow i_{2}, i_{2} \rightarrow i_{3}, \ldots, i_{n-1} \rightarrow i_{n}\right}, 在哪里\left{i_{1}, \ldots, i_{n}\right}\left{i_{1}, \ldots, i_{n}\right}是一个排列1,…,n.

我们有一个自然的左动作小号n在片场G(n): 为了n-图形Γ和排列σ, 新的n-图形σ(Γ)被定义为与Γ但是带有标记为的顶点一世重新标记为σ(一世), 对于每个一世=1,…,n. 所以,如果n-图形Γ有一个定向边缘一世→j,那么n-图形σ(Γ)有定向边σ(一世)→σ(j). 注意小号n置换集合n-行。

让我们回顾一下n-图,如 [BDSHK19] 中所述。给定一个n-元组(米1,…,米n)的正整数,让米一世如(3.5)。如果Γ∈G(米n), 定义Δ一世米1,…,米n(Γ)∈G(米一世),一世=1,…,n,成为的子图Γ与顶点集相关联\left{M_{i-1}+1, \ldots, M_{i}\right}\left{M_{i-1}+1, \ldots, M_{i}\right}, 重新标记为\left{1, \ldots, m_{i}\right}\left{1, \ldots, m_{i}\right}. 也定义Δ0米1,…,米n(Γ)是从得到的图Γ通过折叠每个顶点和边Δ一世米1,…,米n(Γ)到单个顶点,重新标记为一世. 那么合成图就是图

Δ米1,…,米n:G(米n)→G(n)×G(米1)×⋯×G(米n) Γ↦(Δ0米1,…,米n(Γ),Δ1米1,…,米n(Γ),…,Δn米1,…,米n(Γ))

数学代写|表示论代写Representation theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。