如果你也在 怎样代写表示论Representation theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。
表示论是数学的一个分支,它通过将抽象代数结构的元素表示为向量空间的线性变换来研究抽象代数结构,并研究这些抽象代数结构上的模块。[1][2]实质上,表示通过用矩阵及其代数运算(例如,矩阵加、矩阵乘)来描述其元素,使抽象代数对象更加具体。矩阵和线性运算符的理论已被充分理解,因此用熟悉的线性代数对象来表示更抽象的对象有助于收集属性,有时还能简化更抽象理论的计算。
statistics-lab™ 为您的留学生涯保驾护航 在代写表示论Representation theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写表示论Representation theory代写方面经验极为丰富,各种代写表示论Representation theory相关的作业也就用不着说。
我们提供的表示论Representation theory及其相关学科的代写,服务范围广, 其中包括但不限于:
- Statistical Inference 统计推断
- Statistical Computing 统计计算
- Advanced Probability Theory 高等概率论
- Advanced Mathematical Statistics 高等数理统计学
- (Generalized) Linear Models 广义线性模型
- Statistical Machine Learning 统计机器学习
- Longitudinal Data Analysis 纵向数据分析
- Foundations of Data Science 数据科学基础
数学代写|表示论代写Representation theory代考|The Presentation by Generators and Relations
We still assume that the interaction is weak. We start by some general Remarks that are proved exactly as in [AAH1, $\S 4.3]$.
Remark 4.6 Let
$$
y_{2 k}=x_{21}^{k}, \quad y_{2 k+1}=x_{1} x_{21}^{k}, \quad k \in \mathbb{N}{0} . $$ By Lemma $4.2$ $$ \partial{3}\left(z_{l}\right)=\mu_{t} y_{t}, \quad z_{t} y_{n}=\epsilon^{m t} q_{21}^{n} y_{n} z_{t}, \quad t, n \in \mathbb{N}{0} $$ Lemma 4.7 Assume that $\epsilon^{2}=q{22}^{2}=1$. In $\mathscr{B}\left(\mathfrak{L}\left(q_{22}, \mathscr{G}\right)\right)$, or correspondingly $B_{-}\left(\mathfrak{L}\left(q_{22}, \mathscr{G}\right)\right)$.
$$
\begin{array}{rlrl}
z_{|x|+1} & =0 \
z_{t} z_{t+1} & =q_{21} q_{22} z_{t+1} z_{t} & t \in \mathbb{N}{0}, t<|x| & \ z{t}^{2} & =0 & t \in \mathbb{N}{0}, \epsilon^{t} q{22}=-1 \
\partial_{3}\left(z_{t}^{n+1}\right) & =\mu_{t} q_{21}^{n t} q_{22}^{n} n y_{t} z_{t}^{n}, & n, t \in \mathbb{N}{0}, \epsilon^{t} q{22}=1
\end{array}
$$
Lemma 4.8 Let $\mathscr{B}$ be a quotient algebra of $T(V)$. Assume that $x_{1} x_{3}=q_{12} x_{3} x_{1}$, and either
(a) (3.1), or else
(b) $(3.7), x_{21} x_{3}=q_{12}^{2} x_{3} x_{21}$
hold in $\mathscr{B}$. Then for all $n \in \mathbb{N}{0}$, $$ \begin{aligned} x{1} z_{n} &=\epsilon^{n} q_{12} z_{n} x_{1} \
x_{21} z_{n} &=q_{12}^{2} z_{n} x_{21}
\end{aligned}
$$
Lemma 4.9 Let $\mathscr{B}$ be a quotient algebra of $T(V), \epsilon^{2}=q_{22}^{2}=1$.
(i) Assume that (4.20) and (4.21) hold in $\mathscr{B}$. Then for $0 \leq t<k \leq|r|$,
$$
z_{t} z_{k}=\epsilon^{t k} q_{21}^{k-t} q_{22} z_{k} z_{t}
$$
(ii) Assume that $z_{t}^{2}=0$ in $\mathscr{B}$ for $t \in \mathbb{N}{0}$ such that $\epsilon^{t} q{22}=-1$. Then $z_{t} z_{t+1}=$ $q_{21} q_{22} z_{I+1} z_{t}$ in $\mathscr{B}$.
In other words, (ii) says that (4.21) for a specific $t$ implies (4.20) for $t$.
数学代写|表示论代写Representation theory代考|The Setting and the Main Result
Let $\theta \in \mathbb{N}{\geq 3}, \mathbb{I}{2, \theta}=\mathbb{I}{\theta}-{1}, \mathbb{I}{\theta}^{\dagger}=\mathbb{I}{\theta} \cup\left{\frac{3}{2}\right}$. Let $\lfloor i\rfloor$ be the largest integer $\leq i$. We start from the data $$ \left(q{i j}\right){i, j \in \mathbb{I}{\theta}} \in\left(\mathbb{k}^{\times}\right)^{\theta \times \theta}, \quad q_{11}^{2}=1 ; \quad\left(a_{2}, \ldots, a_{\theta}\right) \in \mathbb{k}^{\mathbb{I}_{2, \theta}}
$$
We assume that $q_{11}=1=: a_{1}$. Let $(V, c)$ be the braided vector space of dimension $\theta+1$, with a basis $\left(x_{i}\right){i \in \mathbb{I}{\theta}^{\dagger}}$ and braiding given by
$$
c\left(x_{i} \otimes x_{j}\right)= \begin{cases}q_{\lfloor i\rfloor j} x_{j} \otimes x_{i}, & i \in \mathbb{I}{\theta}^{\dagger}, j \in \mathbb{I}{\theta} \ q_{\lfloor i\rfloor 1}\left(x_{\frac{3}{2}}+a_{\lfloor i\rfloor} x_{1}\right) \otimes x_{i}, & i \in \mathbb{I}{\theta}^{\dagger}, j=\frac{3}{2}\end{cases} $$ We say that the block and the points have discrete ghost if $a{j} \in \mathbb{F}{p}^{\mathrm{I}{2, \theta}},\left(a_{j}\right) \neq 0$. When this is the case, we pick the representative $r_{j} \in \mathbb{Z}$ of $2 a_{j}$ by imposing $r_{j} \in$ ${1-p, \ldots,-1,0}$, and set $\mathscr{G}{j}=-r{j}$. The ghost between the block and the points is the vector $\mathscr{G}=\left(\mathscr{G}{j}\right){j \in \mathrm{I}{2, \theta}}$ given by $$ \mathscr{G}=-\left(r{j}\right){j \in \mathbb{I}{2, \theta}} \in \mathbb{N}{0}^{\mathbb{I}{2, \theta}}
$$
The braided subspace $V_{1}$ spanned by $x_{1}, x_{\frac{3}{2}}$ is $\simeq \mathcal{V}(1,2)$, while $V_{\text {diag }}$ spanned by $\left(x_{i}\right){i \in \mathbb{I}{2, \theta}}$ is of diagonal type. Obviously,
$$
V=V_{1} \oplus V_{\text {diag }}
$$
Let $\mathcal{X}$ be the set of connected components of the Dynkin diagram of the matrix $\mathbf{q}=\left(q_{i j}\right){i, j \in \mathbb{I}{2, \theta}}$. If $J \in \mathcal{X}$, then we set $J^{\prime}=\mathbb{I}{2, \theta}-J$, $$ V{J}=\sum_{j \in J} \mathbb{k}{g j}^{\chi{j},} \quad \mathscr{G}{J}=\left(\mathscr{G}{j}\right)_{j \in J} .
$$
数学代写|表示论代写Representation theory代考|The Presentation of the Nichols Algebras
We give defining relations and an explicit PBW-basis of $\mathscr{B}(V)$, for all $V$ as in Theorem $5.3$, assuming that the Dynkin diagram of $V_{\text {diag }}$ is connected, i.e., $V_{\text {diag }}=V_{J}$, where $J=\mathrm{I}{2, \theta}$. Essentially the relations are the same as in [AAH1] up to adding the suitable $p$-powers; we omit the proofs as they are minor variations of those in loc. cit. The passage from connected $V{\text {diag }}$ to the general case is standard, just add the quantum commutators between points in different components. Since the case $|J|=1$ was treated in Sect. 4 , we also suppose that $|J|>1$. These braided vector spaces have names given in [AAH1], see Table 2. The braided vector subspace $V_{1} \oplus \mathrm{k} x_{2}$ of such $V$ is of type
- $\mathfrak{L}(-1,2)$ when $V$ is of type $\mathfrak{L}\left(A_{2}, 2\right)$,
- $\mathfrak{L}(\omega, 1)$ when $V$ is of type $\mathfrak{L}\left(A(1 \mid 0)_{3} ; \omega\right)$, or
- $\mathfrak{L}(-1,1)$ for all the other cases.
Thus the subalgebra generated by $V_{1} \oplus \mathrm{kx} x_{2}$ is a Nichols algebra. We recall its relations up to the change of index with respect to Sect. 4 ; the 2 and 3 there are now $\frac{3}{2}$ and 2. As in (2.2), we set $x_{i_{1} i_{2} \ldots i_{M}}=\operatorname{ad}{c} x{i_{1}} x_{i_{2} \ldots i_{M}}$. Also, we have now $z_{n}=\left(\operatorname{ad}{c} x{\frac{3}{2}}\right)^{n} x_{2}, n \in \mathbb{N}{0} .$ First, the defining relations of $\mathscr{B}(\mathcal{L}(-1,1))$ are $$ \begin{aligned} &x{\frac{2}{2}} x_{1}-x_{1} x_{\frac{1}{2}}+\frac{1}{2} x_{1}^{2}, \
&x_{1}^{p} \
&x_{\frac{3}{2}}^{p}, \
&x_{1} x_{2}-q_{12} x_{2} x_{1}, \
&\left(\operatorname{ad}{c} x{\frac{3}{2}}^{2}\right)^{2} x_{2}, \
&x_{2}^{2}, x_{\frac{3}{2}}^{2} 2^{\circ}
\end{aligned}
$$
表示论代考
数学代写|表示论代写Representation theory代考|The Presentation by Generators and Relations
我们仍然假设交互作用很弱。我们从一些在 [AAH1,§§4.3].
备注 4.6 让
是2ķ=X21ķ,是2ķ+1=X1X21ķ,ķ∈ñ0.引理4.2
∂3(和l)=μ吨是吨,和吨是n=ε米吨q21n是n和吨,吨,n∈ñ0引理 4.7 假设ε2=q222=1. 在乙(大号(q22,G)),或相应地乙−(大号(q22,G)).
和|X|+1=0 和吨和吨+1=q21q22和吨+1和吨吨∈ñ0,吨<|X| 和吨2=0吨∈ñ0,ε吨q22=−1 ∂3(和吨n+1)=μ吨q21n吨q22nn是吨和吨n,n,吨∈ñ0,ε吨q22=1
引理 4.8 让乙是一个商代数吨(在). 假使,假设X1X3=q12X3X1, 或者
(a) (3.1), 或者
(b)(3.7),X21X3=q122X3X21
握住乙. 那么对于所有人n∈ñ0,
X1和n=εnq12和nX1 X21和n=q122和nX21
引理 4.9 让乙是一个商代数吨(在),ε2=q222=1.
(i) 假设 (4.20) 和 (4.21) 成立乙. 那么对于0≤吨<ķ≤|r|,
和吨和ķ=ε吨ķq21ķ−吨q22和ķ和吨
(ii) 假设和吨2=0在乙对于 $t \in \mathbb{N} {0}s在CH吨H一个吨\epsilon^{t}q {22}=-1.吨H和nz_{t} z_{t+1}=q_{21} q_{22} z_{I+1} z_{t}一世n\mathscr{B}.我n○吨H和r在○rds,(一世一世)s一个是s吨H一个吨(4.21)F○r一个sp和C一世F一世C吨一世米pl一世和s(4.20)F○rt$。
数学代写|表示论代写Representation theory代考|The Setting and the Main Result
让\theta \in \mathbb{N}{\geq 3}, \mathbb{I}{2, \theta}=\mathbb{I}{\theta}-{1}, \mathbb{I}{\theta} ^{\dagger}=\mathbb{I}{\theta} \cup\left{\frac{3}{2}\right}\theta \in \mathbb{N}{\geq 3}, \mathbb{I}{2, \theta}=\mathbb{I}{\theta}-{1}, \mathbb{I}{\theta} ^{\dagger}=\mathbb{I}{\theta} \cup\left{\frac{3}{2}\right}. 让⌊一世⌋是最大的整数≤一世. 我们从数据开始
(q一世j)一世,j∈我θ∈(ķ×)θ×θ,q112=1;(一个2,…,一个θ)∈ķ我2,θ
我们假设q11=1=:一个1. 让(在,C)是维数的编织向量空间θ+1, 有基础(X一世)一世∈我θ†和编织由
C(X一世⊗Xj)={q⌊一世⌋jXj⊗X一世,一世∈我θ†,j∈我θ q⌊一世⌋1(X32+一个⌊一世⌋X1)⊗X一世,一世∈我θ†,j=32我们说块和点有离散重影如果一个j∈Fp我2,θ,(一个j)≠0. 在这种情况下,我们选择代表rj∈从的2一个j通过强加rj∈ 1−p,…,−1,0, 并设置Gj=−rj. 块和点之间的幽灵是向量G=(Gj)j∈我2,θ由
G=−(rj)j∈我2,θ∈ñ0我2,θ
编织子空间在1跨越X1,X32是≃在(1,2), 尽管在诊断 跨越(X一世)一世∈我2,θ是对角线类型。明显地,
在=在1⊕在诊断
让X是矩阵的 Dynkin 图的连通分量集q=(q一世j)一世,j∈我2,θ. 如果Ĵ∈X,那么我们设Ĵ′=我2,θ−Ĵ,
在Ĵ=∑j∈ĴķGjχj,GĴ=(Gj)j∈Ĵ.
数学代写|表示论代写Representation theory代考|The Presentation of the Nichols Algebras
我们给出了定义关系和明确的 PBW 基础乙(在), 对所有人在如定理5.3, 假设 Dynkin 图在诊断 是连接的,即在诊断 =在Ĵ, 在哪里Ĵ=我2,θ. 本质上,关系与 [AAH1] 中的相同,直到添加合适的p-权力;我们省略了证明,因为它们是 loc 中那些的微小变化。同上。从连接的通道在诊断 对于一般情况是标准的,只需在不同组件的点之间添加量子换向器。自此案|Ĵ|=1在教派接受治疗。4,我们还假设|Ĵ|>1. 这些编织向量空间的名称在 [AAH1] 中给出,见表 2。编织向量子空间在1⊕ķX2这样的在是类型
- 大号(−1,2)什么时候在是类型大号(一个2,2),
- 大号(ω,1)什么时候在是类型大号(一个(1∣0)3;ω), 或者
- 大号(−1,1)对于所有其他情况。
因此生成的子代数在1⊕ķXX2是 Nichols 代数。我们回想起它与 Sect 指数变化的关系。4;现在有 2 和 332和 2. 如 (2.2) 中,我们设置X一世1一世2…一世米=广告CX一世1X一世2…一世米. 另外,我们现在有和n=(广告CX32)nX2,n∈ñ0.一、定义关系乙(大号(−1,1))是X22X1−X1X12+12X12, X1p X32p, X1X2−q12X2X1, (广告CX322)2X2, X22,X3222∘
统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。
金融工程代写
金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。
非参数统计代写
非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。
广义线性模型代考
广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。
术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。
有限元方法代写
有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。
有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。
tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。
随机分析代写
随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
时间序列分析代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。
回归分析代写
多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。