### 数学代写|计算方法代写computational method代考|Estimation of error in energy norm

statistics-lab™ 为您的留学生涯保驾护航 在代写计算方法computational method方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写计算方法computational method代写方面经验极为丰富，各种代写计算方法computational method相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 数学代写|计算方法代写computational method代考|Estimation of error in energy norm

We have seen that the finite element solution minimizes the error in energy norm in the sense of eq. (1.48). It is natural therefore to use the energy norm as a measure of the error of approximation. There are two types of error estimators: (a) A priori estimators that establish the asymptotic rate of convergence of a discretization scheme, given information about the regularity (smoothness) of the exact solution and (b) a posteriori estimators that provide estimates of the error in energy norm for the finite element solution of a particular problem.

There is a very substantial body of work in the mathematical literature on the a priori estimation of the rate of convergence, given a quantitative measure of the regularity of the exact solution and a sequence of discretizations. The underlying theory is outside of the scope of this book; however, understanding the main results is important for practitioners of finite element analysis. For details we refer to $[28,45,70,84]$.

## 数学代写|计算方法代写computational method代考|Regularity

Let us consider problems the exact solution of which has the functional form
$$u_{E X}=x^{\alpha} \varphi(x), \quad \alpha>1 / 2, \quad x \in I=(0, \ell)$$
where $\varphi(x)$ is an analytic or piecewise analytic function, see Definition A.1 in the appendix. Our motivation for considering functions in this form is that this family of functions models the singular behavior of solutions of linear elliptic boundary value problems near vertices in polygonal and polyhedral domains. For $u_{E X}$ to be in the energy space, its first derivative must be square integrable on $I$. Therefore
$$\int_{0}^{t} x^{2(\alpha-1)} d x>0$$
from which it follows that $\alpha$ must be greater than $1 / 2$.
In the following we will see that when $\alpha$ is not an integer then the degree of difficulty associated with approximating $u_{E X}$ by the finite element method is related to the size of $(\alpha-1 / 2)>0$. The smaller $(\alpha-1 / 2)$ is, the more difficult it is to approximate $u_{E X}$.

If $\alpha$ is a fractional number then the measure of regularity used in the mathematical literature is the maximum number of square integrable derivatives, with the notion of derivative generalized to fractional numbers. See sections A.2.3 and A.2.4 in the appendix. For our purposes it is sufficient to remember that if $u_{E X}$ has the functional form of eq. (1.89), and $\alpha$ is not an integer, then $u_{E X}$ lies in the Sobolev space $H^{\alpha+1 / 2-\epsilon}(I)$ where $\epsilon>0$ is arbitrarily small. This means that $\alpha$ must be larger than $1 / 2$ for the first derivative of $u_{E X}$ to be square integrable. See, for example, [59].

If $\alpha$ is an integer then $u_{E X}$ is an analytic or piecewise analytic function and the measure of regularity is the size of the derivatives of $u_{E X}$. Analogous definitions apply to two and three dimensions.
Remark $1.9$ The $k$ th derivative of a function $f(x)$ is a local property of $f(x)$ only when $k$ is an integer. This is not the case for non-integer derivatives.

## 数学代写|计算方法代写computational method代考|A priori estimation of the rate of convergence

Analysts are called upon to choose discretization schemes for particular problems. A sound choice of discretization is based on a priori information on the regularity of the exact solution. If we know that the exact solution lies in Sobolev space $H^{k}(I)$ then it is possible to say how fast the error in energy norm will approach zero as the number of degrees of freedom is increased, given a scheme by which a sequence of discretizations is generated. Index $k$ can be inferred or estimated from the input data $\kappa, c$ and $f$.
We define
$$h=\max {j} \ell{j} / \ell, \quad j=1,2, \ldots M(\Delta)$$
where $\ell_{j}$ is the length of the jth element, $\ell$ is the size of the of the solution domain $I=(1, \ell)$. This is generalized to two and three dimensions where $\ell$ is the diameter of the domain and $\ell_{j}$ is the diameter of the jth element. In this context diameter means the diameter of the smallest circlein one and two dimensions, or sphere in three dimensions,that contains the element or domain. In two and three dimensions the solution domain is denoted by $\Omega$.

The a priori estimate of the relative error in energy norm for $u_{E X} \in H^{k}(\Omega)$, quasiuniform meshes and polynomial degree $p$ is
$$\left(e_{r}\right){E} \stackrel{\text { def }}{=} \frac{\left|u{E X}-u_{F E}\right|_{E(\Omega)}}{\left|u_{E X}\right|_{E(\Omega)}} \leq \begin{cases}C(k) \frac{h^{k-1}}{p^{k-1}}\left|u_{E X}\right|_{H^{k}(\Omega)} & \text { for } k-1 \leq p \ C(k) \frac{h^{p}}{p^{k-1}}\left|u_{E X}\right|_{H p^{+1}(\Omega)} & \text { for } k-1>p\end{cases}$$
where $E(\Omega)$ is the energy norm, $k$ is typically a fractional number and $C(k)$ is a positive constant that depends on $k$ but not on $h$ or $p$. This inequality gives the upper bound for the asymptotic rate of convergence of the relative error in energy norm as $h \rightarrow 0$ or $p \rightarrow \infty$ [22]. This estimate holds for one, two and three dimensions. For one and two dimensions lower bounds were proven in $[13,24]$ and [46] and it was shown that when singularities are located in vertex points then the rate of convergence of the $p$-version is twice the rate of convergence of the $h$-version when both are expressed in terms of the number of degrees of freedom. It is reasonable to assume that analogous results can be proven for three dimensions; however, no proofs are available at present.
We will find it convenient to write the relative error in energy norm in the following form
$$\left(e_{r}\right){E} \leq \frac{C}{N^{\beta}}$$ where $N$ is the number of degrees of freedom and $C$ and $\beta$ are positive constants, $\beta$ is called the algebraic rate of convergence. In one dimension $N \propto 1 / h$ for the $h$-version and $N \propto p$ for the $p$-version. Therefore for $k-1{0}\right|^{\lambda}$ and $x_{0} \in \bar{I}$ is a nodal point then $\beta=2(k-1)$ for the $p$-version: The rate of $p$-convergence is twice that of $h$-convergence [22,84].

∫0吨X2(一种−1)dX>0

## 数学代写|计算方法代写computational method代考|A priori estimation of the rate of convergence

H=最大限度jℓj/ℓ,j=1,2,…米(Δ)

(和r)和= 定义 |在和X−在F和|和(Ω)|在和X|和(Ω)≤{C(ķ)Hķ−1pķ−1|在和X|Hķ(Ω) 为了 ķ−1≤p C(ķ)Hppķ−1|在和X|Hp+1(Ω) 为了 ķ−1>p

(和r)和≤Cñb在哪里ñ是自由度的数量和C和b是正常数，b称为代数收敛速度。在一维ñ∝1/H为了H-版本和ñ∝p为了p-版本。因此对于k-1{0}\right|^{\lambda}k-1{0}\right|^{\lambda}和X0∈一世¯那么是一个节点b=2(ķ−1)为了p-version：速率p-收敛性是 的两倍H-收敛[22,84]。

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。