### 数学代写|计算线性代数代写Computational Linear Algebra代考|LDL* Factorization and Positive Definite

statistics-lab™ 为您的留学生涯保驾护航 在代写计算线性代数Computational Linear Algebra方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写计算线性代数Computational Linear Algebra代写方面经验极为丰富，各种代写计算线性代数Computational Linear Algebra相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 数学代写|计算线性代数代写Computational Linear Algebra代考|The LDL* Factorization

There are special versions of the LU factorization for Hermitian and positive definite matrices which takes advantage of the special properties of such matrices. The most important ones are

1. the LDL* factorization which is an LDU factorization with $\boldsymbol{U}=\boldsymbol{L}^{*}$ and $\boldsymbol{D}$ a diagonal matrix with real diagonal elements
2. the $\mathrm{LL}^{}$ factorization which is an LU factorization with $\boldsymbol{U}=\boldsymbol{L}^{}$ and $l_{i i}>0$ all $i$.

A matrix $A$ having an LDL factorization must be Hermitian since $D$ is real so that $A^{}=\left(\boldsymbol{L} \boldsymbol{D} L^{}\right)^{}=\boldsymbol{L} D^{} L^{}=A$. The LL factorization is called a Cholesky factorization .

Example $4.1$ (LDL* of $2 \times 2$ Hermitian Matrix) Let $a, d \in \mathbb{R}$ and $b \in \mathrm{C}$. An LDL factorization of a $2 \times 2$ Hermitian matrix must satisfy the equations
$$\left[\begin{array}{ll} a & \bar{b} \ b & d \end{array}\right]=\left[\begin{array}{ll} 1 & 0 \ l_{1} & 1 \end{array}\right]\left[\begin{array}{cc} d_{1} & 0 \ 0 & d_{2} \end{array}\right]\left[\begin{array}{ll} 1 & \overline{l_{1}} \ 0 & 1 \end{array}\right]=\left[\begin{array}{cc} d_{1} & d_{1} \overline{l_{1}} \ d_{1} l_{1} & d_{1}\left|l_{1}\right|^{2}+d_{2} \end{array}\right]$$ for the unknowns $l_{1}$ in $\boldsymbol{L}$ and $d_{1}, d_{2}$ in $\boldsymbol{D}$. They are determined from
$$d_{1}=a . \quad a l_{1}=b, \quad d_{2}=d-a\left|l_{1}\right|^{2}$$
There are essentially three cases

1. $a \neq 0$ : The matrix has a unique LDL* factorization. Note that $d_{1}$ and $d_{2}$ are real.
2. $a=b=0$ : The LDL* factorization exists, but it is not unique. Any value for $l_{1}$ can be used.
3. $a=0, b \neq 0$ : No LDL* factorization exists.
Lemma 3. I carries over to the Hermitian case.

## 数学代写|计算线性代数代写Computational Linear Algebra代考|Positive Definite and Semidefinite Matrices

Given $A \in \mathbb{C}^{n \times n}$. The function $f: \mathbb{C}^{n} \rightarrow \mathbb{R}$ given by
$$f(x)=x^{*} A x=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} \bar{x}{i} x{j}$$

is called a quadratic form. Note that $f$ is real valued if $A$ is Hermitian. Indeed, $\overline{f(x)}=\overline{x^{} A x}=\left(x^{} A x\right)^{}=x^{} A^{} x=f(x)$ Definition 4.1 (Positive Definite Matrix) We say that a matrix $A \in \mathbb{C}^{n \times n}$ is (i) positive definite if $A^{}=A$ and $x^{} A x>0$ for all nonzero $x \in \mathbb{C}^{n}$; (ii) positive semidefinite if $A^{}=A$ and $x^{*} A x \geq 0$ for all $x \in \mathbb{C}^{n}$;
(iii) negative (semi)definite if $-A$ is positive (semi)definite.
We observe that

1. The zero-matrix is positive semidefinite, while the unit matrix is positive definite.
2. The matrix $A$ is positive definite if and only if it is positive semidefinite and $x^{*} A x=0 \Longrightarrow x=0$.
3. A positive definite matrix $A$ is nonsingular. For if $A x=0$ then $x^{*} A x=0$ and this implies that $\boldsymbol{x}=\mathbf{0}$.
4. It follows from Lemma $4.6$ that a nonsingular positive semidefinite matrix is positive definite.
5. If $A$ is real then it is enough to show definiteness for real vectors only. Indeed, if $\boldsymbol{A} \in \mathbb{R}^{n \times n}, \boldsymbol{A}^{T}=\boldsymbol{A}$ and $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}>0$ for all nonzero $\boldsymbol{x} \in \mathbb{R}^{n}$ then $z^{} \boldsymbol{A} z>0$ for all nonzero $z \in \mathbb{C}^{n}$. For if $z=x+i y \neq 0$ with $x, y \in \mathbb{R}^{n}$ then \begin{aligned} z^{} \boldsymbol{A} z &=(\boldsymbol{x}-i \boldsymbol{y})^{T} \boldsymbol{A}(\boldsymbol{x}+i \boldsymbol{y})=\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}-i \boldsymbol{y}^{T} \boldsymbol{A} \boldsymbol{x}+i \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{y}-i^{2} \boldsymbol{y}^{T} \boldsymbol{A} \boldsymbol{y} \ &=\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}+\boldsymbol{y}^{T} \boldsymbol{A} \boldsymbol{y} \end{aligned}
and this is positive since at least one of the real vectors $\boldsymbol{x}, \boldsymbol{y}$ is nonzero.

## 数学代写|计算线性代数代写Computational Linear Algebra代考|The Cholesky Factorization

Recall that a principal submatrix $\boldsymbol{B}=\boldsymbol{A}(\boldsymbol{r}, \boldsymbol{r}) \in \mathbb{C}^{k \times k}$ of a matrix $A \in \mathbb{C}^{n \times n}$ has elements $b_{i, j}=a_{r i, r j}$ for $i, j=1, \ldots, k$, where $1 \leq r_{1}<\cdots<r_{k} \leq n$. It is a leading principal submatrix, denoted $A_{[k]}$ if $\boldsymbol{r}=[1,2, \ldots, k]^{T}$. We have
$$\boldsymbol{A}(\boldsymbol{r}, \boldsymbol{r})=\boldsymbol{X}^{*} \boldsymbol{A} \boldsymbol{X}, \quad \boldsymbol{X}:=\left[\boldsymbol{e}{r{1}}, \ldots, \boldsymbol{e}{r{k}}\right] \in \mathbb{C}^{n \times k}$$
Lemma 4.4 (Submatrices) Any principal submatrix of a positive (semi)definite matrix is positive (semi)definite.

Proof Let $\boldsymbol{X}$ and $\boldsymbol{B}:=\boldsymbol{A}(\boldsymbol{r}, \boldsymbol{r})$ be given by (4.5). If $\boldsymbol{A}$ is positive semidefinite then $B$ is positive semidefinite since
$$\boldsymbol{y}^{} \boldsymbol{B} \boldsymbol{y}=\boldsymbol{y}^{} \boldsymbol{X}^{} \boldsymbol{A} \boldsymbol{X} \boldsymbol{y}=\boldsymbol{x}^{} \boldsymbol{A} \boldsymbol{x} \geq 0, \quad \boldsymbol{y} \in \mathbb{C}^{k}, \quad \boldsymbol{x}:=\boldsymbol{X} \boldsymbol{y}$$
Suppose $\boldsymbol{A}$ is positive definite and $\boldsymbol{y}^{*} \boldsymbol{B} \boldsymbol{y}=0$. By (4.6) we have $\boldsymbol{x}=\mathbf{0}$ and since $\boldsymbol{X}$ has linearly independent columns it follows that $\boldsymbol{y}=\mathbf{0}$. We conclude that $\boldsymbol{B}$ is positive definite.

## 数学代写|计算线性代数代写Computational Linear Algebra代考|The LDL* Factorization

Hermitian 和正定矩阵有特殊版本的 LU 分解，它利用了这些矩阵的特殊性质。最重要的是

1. LDL* 分解，它是一个 LDU 分解在=大号∗和D具有实对角元素的对角矩阵
2. 这大号大号因式分解，这是一个 LU 因式分解在=大号和l一世一世>0全部一世.

[一个b¯ bd]=[10 l11][d10 0d2][1l1¯ 01]=[d1d1l1¯ d1l1d1|l1|2+d2]对于未知数l1在大号和d1,d2在D. 它们由

d1=一个.一个l1=b,d2=d−一个|l1|2

1. 一个≠0：矩阵具有唯一的 LDL* 分解。注意d1和d2是真实的。
2. 一个=b=0：存在 LDL* 分解，但它不是唯一的。任何价值l1可以使用。
3. 一个=0,b≠0：不存在 LDL* 分解。
引理 3. 我继续讨论 Hermitian 案例。

## 数学代写|计算线性代数代写Computational Linear Algebra代考|Positive Definite and Semidefinite Matrices

F(X)=X∗一个X=∑一世=1n∑j=1n一个一世jX¯一世Xj

(iii) 否定（半）定如果−一个是正（半）定的。

1. 零矩阵是半正定的，而单位矩阵是正定的。
2. 矩阵一个是正定的当且仅当它是半正定的并且X∗一个X=0⟹X=0.
3. 一个正定矩阵一个是非奇异的。如果一个X=0然后X∗一个X=0这意味着X=0.
4. 它遵循引理4.6非奇异半正定矩阵是正定矩阵。
5. 如果一个是真实的，那么仅显示实向量的确定性就足够了。确实，如果一个∈Rn×n,一个吨=一个和X吨一个X>0对于所有非零X∈Rn然后和一个和>0对于所有非零和∈Cn. 如果和=X+一世是≠0和X,是∈Rn然后和一个和=(X−一世是)吨一个(X+一世是)=X吨一个X−一世是吨一个X+一世X吨一个是−一世2是吨一个是 =X吨一个X+是吨一个是
这是肯定的，因为至少有一个实向量X,是是非零的。

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。