数学代写|黎曼几何代写Riemannian geometry代考|MATH3342

如果你也在 怎样代写黎曼几何Riemannian geometry这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

黎曼几何是研究黎曼流形的微分几何学分支,黎曼流形是具有黎曼公制的光滑流形,即在每一点的切线空间上有一个内积,从一点到另一点平滑变化。

statistics-lab™ 为您的留学生涯保驾护航 在代写黎曼几何Riemannian geometry方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写黎曼几何Riemannian geometry代写方面经验极为丰富,各种代写黎曼几何Riemannian geometry相关的作业也就用不着说。

我们提供的黎曼几何Riemannian geometry及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|黎曼几何代写Riemannian geometry代考|MATH3342

数学代写|黎曼几何代写Riemannian geometry代考|The Minimal Control and the Length of an Admissible Curve

We start by defining the sub-Riemannian norm for vectors that belong to the distribution of a sub-Riemannian manifold.

Definition 3.8 Let $v \in \mathcal{D}{q}$. We define the sub-Riemannian norm of $v$ as follows: $$ |v|:=\min \left{|u|, u \in U{q} \text { s.t. } v=f(q, u)\right} .
$$
Notice that since $f$ is linear with respect to $u$, the minimum in $(3.9)$ is always attained at a unique point. Indeed, the condition $f(q, \cdot)=v$ defines an affine subspace of $U_{q}$ (which is nonempty since $v \in \mathcal{D}_{q}$ ) and the minimum in (3.9) is uniquely attained at the orthogonal projection of the origin onto this subspace (see Figure 3.2).

Exercise 3.9 Show that $|\cdot|$ is a norm in $\mathcal{D}{q}$. Moreover prove that it satisfies the parallelogram law, i.e., it is induced by a scalar product $\langle\cdot \mid \cdot\rangle{q}$ on $\mathcal{D}{q}$ that can be recovered by the polarization identity $$ \langle v \mid w\rangle{q}=\frac{1}{4}|v+w|^{2}-\frac{1}{4}|v-w|^{2}, \quad v, w \in \mathcal{D}{q} . $$ Exercise $3.10$ Let $u{1}, \ldots, u_{m} \in U_{q}$ be an orthonormal basis for $U_{q}$. Define $v_{i}=f\left(q, u_{i}\right)$. Show that if $f(q, \cdot)$ is injective then $v_{1}, \ldots, v_{m}$ is an orthonormal basis for $\mathcal{D}_{q}$.

An admissible curve $\gamma:[0, T] \rightarrow M$ is Lipschitz, hence differentiable at almost every point. Hence the unique control $t \mapsto u^{*}(t)$ associated with $\gamma$ and realizing the minimum in $(3.9)$ is well defined a.e. on $[0, T]$.

数学代写|黎曼几何代写Riemannian geometry代考|Equivalence of Sub-Riemannian Structures

In this section we introduce the notion of the equivalence of sub-Riemannian structures on the same base manifold $M$ and the notion of isometry between sub-Riemannian manifolds.

Definition $3.18$ Let $(\mathbf{U}, f),\left(\mathbf{U}^{\prime}, f^{\prime}\right)$ be two sub-Riemannian structures on a smooth manifold $M$. They are said to be equivalent as distributions if the following conditions hold:

(i) there exist a Euclidean bundle $\mathbf{V}$ and two surjective vector bundle morphisms $p: \mathbf{V} \rightarrow \mathbf{U}$ and $p^{\prime}: \mathbf{V} \rightarrow \mathbf{U}^{\prime}$ such that the following diagram is commutative:

The structures $(\mathbf{U}, f)$ and $\left(\mathbf{U}^{\prime}, f^{\prime}\right)$ are said to be equivalent as sub-Riemannian structures (or simply equivalent) if (i) is satisfied and moreover
(ii) the projections $p, p^{\prime}$ are compatible with the scalar product, i.e., it holds that
$$
\begin{aligned}
|u| &=\min {|v|, p(v)=u}, & \forall u \in \mathbf{U}, \
\left|u^{\prime}\right| &=\min \left{|v|, p^{\prime}(v)=u^{\prime}\right}, & \forall u^{\prime} \in \mathbf{U}^{\prime} .
\end{aligned}
$$
Remark $3.19$ If $(\mathbf{U}, f)$ and $\left(\mathbf{U}^{\prime}, f^{\prime}\right)$ arc cquivalcnt as sub-Ricmannian structures on $M$ then:
(a) the distributions $\mathcal{D}{q}$ and $\mathcal{D}{q}^{\prime}$ defined by $f$ and $f^{\prime}$ coincide, since $f\left(U_{q}\right)=f^{\prime}\left(U_{q}^{\prime}\right)$ for all $q \in M$;
(b) for each $w \in \mathcal{D}_{q}$ we have $|w|=|w|^{\prime}$, where $|\cdot|$ and $|\cdot|^{\prime}$ are the norms induced by $(\mathbf{U}, f)$ and $\left(\mathbf{U}^{\prime}, f^{\prime}\right)$ respectively.
In particular the lengths of admissible curves for two equivalent subRiemannian structures are the same.

Exercise 3.20 Prove that $(M, \mathbf{U}, f)$ and $\left(M, \mathbf{U}^{\prime}, f^{\prime}\right)$ are equivalent as distributions if and only if the moduli of the horizontal vector fields $\mathcal{D}$ and $\mathcal{D}^{\prime}$ coincide.

数学代写|黎曼几何代写Riemannian geometry代考|Sub-Riemannian Distance

In this section we introduce the sub-Riemannian distance and prove the Rashevskii-Chow theorem.

Recall that, thanks to the results of Section 3.1.4, in what follows we can assume that the sub-Riemannian structure on $M$ is free, with generating family $\mathcal{F}=\left{f_{1}, \ldots, f_{m}\right}$. Notice that, by the definition of a sub-Riemannian manifold, $M$ is assumed to be connected and $\mathcal{F}$ is assumed to be bracketgenerating.

Definition 3.30 Let $M$ be a sub-Riemannian manifold and $q_{0}, q_{1} \in M$. The sub-Riemannian distance (or Carnot-Carathéodory distance) between $q_{0}$ and $q_{1}$ is
$d\left(q_{0}, q_{1}\right)=\inf \left{\ell(\gamma) \mid \gamma:[0, T] \rightarrow M\right.$ admissible, $\left.\gamma(0)=q_{0}, \gamma(T)=q_{1}\right} .$
We now state the main result of this section.
Theorem $3.31$ (Rashevskii-Chow) Let $M$ be a sub-Riemannian manifold. Then
(i) $(M, d)$ is a metric space,
(ii) the topology induced by $(M, d)$ is equivalent to the manifold topology.
In particular, $d: M \times M \rightarrow \mathbb{R}$ is continuous.
One of the main consequences of this result is that, thanks to the bracketgenerating condition, for every $q_{0}, q_{1} \in M$ there exists an admissible curve that joins them. Hence $d\left(q_{0}, q_{1}\right)<+\infty$.

In what follows $B(q, r)$ (sometimes denoted also $B_{r}(q)$ ) is the (open) subRiemannian ball of radius $r$ and center $q$ :
$$
B(q, r):=\left{q^{\prime} \in M \mid d\left(q, q^{\prime}\right)<r\right} .
$$

数学代写|黎曼几何代写Riemannian geometry代考|MATH3342

黎曼几何代考

数学代写|黎曼几何代写Riemannian geometry代考|The Minimal Control and the Length of an Admissible Curve

我们首先为属于亚黎曼流形分布的向量定义亚黎曼范数。

定义 3.8 让在∈Dq. 我们定义的亚黎曼范数在如下:

|v|:=\min \left{|u|, u \in U{q} \text { st } v=f(q, u)\right} 。|v|:=\min \left{|u|, u \in U{q} \text { st } v=f(q, u)\right} 。
请注意,由于F是线性的在, 中的最小值(3.9)总是在一个独特的点上获得。确实,条件F(q,⋅)=在定义了一个仿射子空间在q(这是非空的,因为在∈Dq) 并且 (3.9) 中的最小值是在原点到该子空间的正交投影处唯一获得的(参见图 3.2)。

练习 3.9 证明|⋅|是一个规范Dq. 进一步证明它满足平行四边形定律,即它是由一个标量积导出的⟨⋅∣⋅⟩q上Dq可以通过极化同一性恢复

⟨在∣在⟩q=14|在+在|2−14|在−在|2,在,在∈Dq.锻炼3.10让在1,…,在米∈在q是一个正交基在q. 定义在一世=F(q,在一世). 证明如果F(q,⋅)是内射的在1,…,在米是一个正交基Dq.

可接受的曲线C:[0,吨]→米是 Lipschitz,因此几乎在每个点都是可微的。因此,独特的控制吨↦在∗(吨)有关联C并实现最小化(3.9)定义明确 ae on[0,吨].

数学代写|黎曼几何代写Riemannian geometry代考|Equivalence of Sub-Riemannian Structures

在本节中,我们介绍了相同基础流形上的亚黎曼结构等价的概念米以及亚黎曼流形之间的等距概念。

定义3.18让(在,F),(在′,F′)是光滑流形上的两个亚黎曼结构米. 如果满足以下条件,则称它们与分布等效:

(i) 存在欧几里得丛在和两个满射向量丛态射p:在→在和p′:在→在′使得下图是可交换的:

结构(在,F)和(在′,F′)如果满足 (i) 并且
(ii)p,p′与标量积兼容,即它认为

\begin{对齐} |u| &=\min {|v|, p(v)=u}, & \forall u \in \mathbf{U}, \ \left|u^{\prime}\right| &=\min \left{|v|, p^{\prime}(v)=u^{\prime}\right}, & \forall u^{\prime} \in \mathbf{U}^{\主要} 。\end{对齐}\begin{对齐} |u| &=\min {|v|, p(v)=u}, & \forall u \in \mathbf{U}, \ \left|u^{\prime}\right| &=\min \left{|v|, p^{\prime}(v)=u^{\prime}\right}, & \forall u^{\prime} \in \mathbf{U}^{\主要} 。\end{对齐}
评论3.19如果(在,F)和(在′,F′)arc cquivalcnt 作为亚 Ricmannian 结构米那么:
(a) 分布Dq和Dq′被定义为F和F′巧合,因为F(在q)=F′(在q′)对所有人q∈米;
(b) 对于每个在∈Dq我们有|在|=|在|′, 在哪里|⋅|和|⋅|′规范是由(在,F)和(在′,F′)分别。
特别是两个等效亚黎曼结构的容许曲线长度是相同的。

练习 3.20 证明(米,在,F)和(米,在′,F′)当且仅当水平向量场的模量与分布等价D和D′重合。

数学代写|黎曼几何代写Riemannian geometry代考|Sub-Riemannian Distance

在本节中,我们将介绍亚黎曼距离并证明 Rashevskii-Chow 定理。

回想一下,由于第 3.1.4 节的结果,在下面我们可以假设米是免费的,有生成家庭\mathcal{F}=\left{f_{1}, \ldots, f_{m}\right}\mathcal{F}=\left{f_{1}, \ldots, f_{m}\right}. 请注意,根据亚黎曼流形的定义,米假定连接和F假定为括号生成。

定义 3.30 让米是一个亚黎曼流形并且q0,q1∈米. 之间的亚黎曼距离(或 Carnot-Carathéodory 距离)q0和q1是
d\left(q_{0}, q_{1}\right)=\inf \left{\ell(\gamma) \mid \gamma:[0, T] \rightarrow M\right.$ 可接受,$\left .\gamma(0)=q_{0}, \gamma(T)=q_{1}\right} 。d\left(q_{0}, q_{1}\right)=\inf \left{\ell(\gamma) \mid \gamma:[0, T] \rightarrow M\right.$ 可接受,$\left .\gamma(0)=q_{0}, \gamma(T)=q_{1}\right} 。
我们现在陈述本节的主要结果。
定理3.31(Rashevskii-Chow) 让米是一个亚黎曼流形。那么
(一)(米,d)是一个度量空间,
(ii)由(米,d)等价于流形拓扑。
尤其是,d:米×米→R是连续的。
这个结果的主要结果之一是,由于括号生成条件,对于每个q0,q1∈米存在一条连接它们的允许曲线。因此d(q0,q1)<+∞.

在接下来的乙(q,r)(有时也表示乙r(q)) 是半径的(开)亚黎曼球r和中心q :

B(q, r):=\left{q^{\prime} \in M \mid d\left(q, q^{\prime}\right)<r\right} 。

数学代写|黎曼几何代写Riemannian geometry代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。