### 机器学习代写|流形学习代写manifold data learning代考|EECS 559a

statistics-lab™ 为您的留学生涯保驾护航 在代写流形学习manifold data learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写流形学习manifold data learning代写方面经验极为丰富，各种代写流形学习manifold data learning相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 机器学习代写|流形学习代写manifold data learning代考|Spectral Embedding Methods for Manifold Learning

Manifold learning encompasses much of the disciplines of geometry, computation, and statistics, and has become an important research topic in data mining and statistical learning. The simplest description of manifold learning is that it is a class of algorithms for recovering a low-dimensional manifold embedded in a high-dimensional ambient space. Major breakthroughs on methods for recovering low-dimensional nonlinear embeddings of highdimensional data (Tenenbaum, de Silva, and Langford, 2000; Roweis and Saul, 2000) led to the construction of a number of other algorithms for carrying out nonlinear manifold learning and its close relative, nonlinear dimensionality reduction. The primary tool of all embedding algorithms is the set of eigenvectors associated with the top few or bottom few eigenvalues of an appropriate random matrix. We refer to these algorithms as spectral embedding methods. Spectral embedding methods are designed to recover linear or nonlinear manifolds, usually in high-dimensional spaces.

Linear methods, which have long been considered part-and-parcel of the statistician’s toolbox, include PRINCIPAL COMPONENT ANALYSIS (PCA) and MULTIDIMENSIONAL SCALING (MDS). PCA has been used successfully in many different disciplines and applications. In computer vision, for example, PCA is used to study abstract notions of shape, appearance, and motion to help solve problems in facial and object recognition, surveillance, person tracking, security, and image compression where data are of high dimensionality (Turk and Pentland, 1991; De la Torre and Black, 2001). In astronomy, where very large digital sky surveys have become the norm, PCA has been used to analyze and classify stellar spectra, carry out morphological and spectral classification of galaxies and quasars, and analyze images of supernova remnants (Steiner, Menezes, Ricci, and Oliveira, 2009). In bioinformatics, PCA has been used to study high-dimensional data generated by genome-wide, gene-expression experiments on a variety of tissue sources, where scatterplots of the top principal components in such studies often show specific classes of genes that are expressed by different clusters of distinctive biological characteristics (Yeung and Ruzzo, 2001; ZhengBradley, Rung, Parkinson, and Brazma, 2010). PCA has also been used to select an optimal subset of single nucleotide polymorphisms (SNPs) (Lin and Altman, 2004). PCA is also used to derive approximations to more complicated nonlinear subspaces, including problems involving data interpolation, compression, denoising, and visualization.

## 机器学习代写|流形学习代写manifold data learning代考|Spaces and Manifolds

Manifold learning involves concepts from general topology and differential geometry. Good introductions to topological spaces include Kelley (1955), Willard (1970), Bourbaki (1989), Mendelson (1990), Steen (1995), James (1999), and several of these have since been reprinted. Books on differential geometry include Spivak (1965), Kreyszig (1991), Kühnel (2000), Lee (2002), and Pressley (2010).

Manifolds generalize the notions of curves and surfaces in two and three dimensions to higher dimensions. Before we give a formal description of a manifold, it will be helpful to visualize the notion of a manifold. Imagine an ant at a picnic, where there are all sorts of items from cups to doughnuts. The ant crawls all over the picnic items, but because of its tiny size, the ant sees everything on a very small scale as flat and featureless. Similarly, a human, looking around at the immediate vicinity, would not see the curvature of the earth. A manifold (also referred to as a topological manifold) can be thought of in similar terms, as a topological space that locally looks flat and featureless and behaves like Euclidean space. Unlike a metric space, a topological space has no concept of distance. In this Section, we review specific definitions and ideas from topology and differential geometry that enable us to provide a useful definition of a manifold.

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。