机器学习代写|自然语言处理代写NLP代考|CS224n

如果你也在 怎样代写自然语言处理NLP这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

自然语言处理(NLP)是指计算机程序理解人类语言的能力,因为它是口头和书面的,被称为自然语言。它是人工智能(AI)的一个组成部分。

statistics-lab™ 为您的留学生涯保驾护航 在代写自然语言处理NLP方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写自然语言处理NLP代写方面经验极为丰富,各种代写自然语言处理NLP相关的作业也就用不着说。

我们提供的自然语言处理NLP及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
机器学习代写|自然语言处理代写NLP代考|CS224n

机器学习代写|自然语言处理代写NLP代考|Getting Started with the Model Architecture of the Transformer

Language is the essence of human communication. Civilizations would never have been born without the word sequences that form language. We now mostly live in a world of digital representations of language. Our daily lives rely on Natural Language Processing (NLP) digitalized language functions: web search engines, emails, social networks, posts, tweets, smartphone texting, translations, web pages, speech-to-text on streaming sites for transcripts, text-to-speech on hotline services, and many more everyday functions.

In December 2017, the seminal Vaswani et al. Attention Is All You Need article, written by Google Brain members and Google Research, was published. The Transformer was born. The Transformer outperformed the existing state-of-the-art NLP models. The Transformer trained faster than previous architectures and obtained higher evaluation results. Transformers have become a key component of NLP.
The digital world would never have existed without NLP. Natural Language Processing would have remained primitive and inefficient without artificial intelligence. However, the use of Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs) comes at a tremendous cost in terms of calculations and machine power.

In this chapter, we will first start with the background of NLP that led to the rise of the Transformer. We will briefly go from early NLP to RNNs and CNNs. Then we will see how the Transformer overthrew the reign of RNNs and CNNs, which had prevailed for decades for sequence analysis.

Then we will open the hood of the Transformer model described by Vaswani et al. (2017) and examine the key components of its architecture. We will explore the fascinating world of attention and illustrate the key components of the Transformer.
This chapter covers the following topics:

  • The background of the Transformer
  • The architecture of the Transformer
  • The Transformer’s self-attention model
  • The encoding and decoding stacks
  • Input and output embedding
  • Positional embedding
  • Self-attention
  • Multi-head attention
  • Masked multi-attention
  • Residual connections
  • Normalization
  • Feedforward network
  • Output probabilities
    Our first step will be to explore the background of the Transformer.

机器学习代写|自然语言处理代写NLP代考|The background of the Transformer

In this section, we will go through the background of NLP that led to the Transformer. The Transformer model invented by Google Research has toppled decades of Natural Language Processing research, development, and implementations.
Let us first see how that happened when NLP reached a critical limit that required a new approach.

Over the past $100+$ years, many great minds have worked on sequence transduction and language modeling. Machines progressively learned how to predict probable sequences of words. It would take a whole book to cite all the giants that made this happen.

In this section, I will share my favorite researchers with you to lay the ground for the arrival of the Transformer.

In the early $20^{\text {th }}$ century, Andrey Markov introduced the concept of random values and created a theory of stochastic processes. We know them in artificial intelligence (AI) as Markov Decision Processes (MDPs), Markov Chains, and Markov Processes. In 1902, Markov showed that we could predict the next element of a chain, a sequence, using only the last past element of that chain. In 1913, he applied this to a 20,000 -letter dataset using past sequences to predict the future letters of a chain. Bear in mind that he had no computer but managed to prove his theory, which is still in use today in AI.
In 1948, Claude Shannon’s The Mathematical Theory of Communication was published. He cites Andrey Markov’s theory multiple times when building his probabilistic approach to sequence modeling. Claude Shannon laid the ground for a communication model based on a source encoder, a transmitter, and a received decoder or semantic decoder.

机器学习代写|自然语言处理代写NLP代考|CS224n

NLP代考

机器学习代写|自然语言处理代写NLP代考|Getting Started with the Model Architecture of the Transformer

语言是人类交流的本质。如果没有构成语言的词序列,文明就不会诞生。我们现在大多生活在语言数字表示的世界中。我们的日常生活依赖于自然语言处理 (NLP) 数字化语言功能:网络搜索引擎、电子邮件、社交网络、帖子、推文、智能手机短信、翻译、网页、流媒体网站上的语音到文本的转录、文本到- 热线服务演讲,以及更多日常功能。

2017 年 12 月,开创性的 Vaswani 等人。发表了由 Google Brain 成员和 Google Research 撰写的 Attention Is All You Need 文章。变形金刚诞生了。Transformer 的性能优于现有的最先进的 NLP 模型。Transformer 的训练速度比以前的架构更快,并获得了更高的评估结果。Transformer 已成为 NLP 的关键组成部分。
如果没有 NLP,数字世界就不会存在。如果没有人工智能,自然语言处理将保持原始和低效。然而,循环神经网络 (RNN) 和卷积神经网络 (CNN) 的使用在计算和机器能力方面付出了巨大的代价。

在本章中,我们将首先从导致 Transformer 兴起的 NLP 的背景开始。我们将从早期的 NLP 简要介绍到 RNN 和 CNN。然后我们将看到 Transformer 如何推翻 RNN 和 CNN 的统治,这些统治在序列分析中盛行了数十年。

然后我们将打开 Vaswani 等人描述的 Transformer 模型的引擎盖。(2017)并检查其架构的关键组件。我们将探索迷人的注意力世界,并说明 Transformer 的关键组件。
本章涵盖以下主题:

  • 变压器的背景
  • 变压器的架构
  • Transformer 的自注意力模型
  • 编码和解码堆栈
  • 输入和输出嵌入
  • 位置嵌入
  • 自注意力
  • 多头注意力
  • 蒙面多注意
  • 剩余连接
  • 正常化
  • 前馈网络
  • 输出概率
    我们的第一步是探索 Transformer 的背景。

机器学习代写|自然语言处理代写NLP代考|The background of the Transformer

在本节中,我们将介绍导致 Transformer 的 NLP 的背景。Google Research 发明的 Transformer 模型颠覆了数十年的自然语言处理研究、开发和实施。
让我们首先看看当 NLP 达到需要一种新方法的临界极限时会发生什么。

在过去的100+多年来,许多伟大的思想家致力于序列转导和语言建模。机器逐渐学会了如何预测可能的单词序列。引用所有促成这一切的巨头需要一整本书。

在本节中,我将与您分享我最喜欢的研究人员,为变形金刚的到来奠定基础。

在早期的20th 世纪,安德烈马尔科夫引入了随机值的概念并创建了随机过程理论。我们在人工智能 (AI) 中将它们称为马尔可夫决策过程 (MDP)、马尔可夫链和马尔可夫过程。1902 年,马尔可夫证明我们可以预测一个链的下一个元素,一个序列,只使用该链的最后一个过去元素。1913 年,他将其应用于 20,000 个字母的数据集,使用过去的序列来预测链的未来字母。请记住,他没有计算机,但设法证明了他的理论,该理论今天仍在人工智能中使用。
1948年,克劳德·香农的《通信的数学理论》出版。在构建序列建模的概率方法时,他多次引用了 Andrey Markov 的理论。Claude Shannon 为基于源编码器、发射器和接收解码器或语义解码器的通信模型奠定了基础。

机器学习代写|自然语言处理代写NLP代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。