物理代写|力学代写mechanics代考|CIVE 360

statistics-lab™ 为您的留学生涯保驾护航 在代写力学 mechanics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写力学 mechanics代写方面经验极为丰富，各种代写力学 mechanics相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• Advanced Probability Theory 高等概率论
• Advanced Mathematical Statistics 高等数理统计学
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

物理代写|力学代写mechanics代考|GENERAL CONCEPT

Engineering systems must be designed to withstand the actual and probable loads that may be imposed on them. Hence, the wall of a dam must be of adequate strength to hold out mainly against the reservoir water pressure, but must also be able to withstand other loads such as occasional seismic shocks, thermal expansions/contractions and many others. A tennis racket is designed to take the dynamic and impact loads imposed by a fast-moving flying tennis ball. It must also be adequately designed to withstand impact loads when incidentally hitting hard ground. Oil drilling equipment must be designed to suitably and adequately drill through different types of rock materials, but at the same time it must ensure that its imposing loads do not change rock formation integrity, and affect the stability of the drilled well.

The concept of solid mechanics provides the analytical methods of for designing solid engineering systems with adequate strength, stiffness, stability and integrity. Although, it is different, it very much overlaps with the concepts and analytical methods provided by continuum mechanics. Solid mechanics is used broadly across all branches of the engineering science, including many applications in as oil and gas exploration, drilling, completion and production. In this discipline, the behavior of an engineering object, subjected to various forces and constraints (as shown in Figure 1.1), is evaluated using the fundamental laws of Newtonian mechanics, which governs the balance of forces, and the mechanical properties or characteristics of the materials from which the object is made.

The two key elements of solid mechanics are the internal resistance of a solid object, which acts to balance the effects of imposing external forces, represented by a term called stress, and the shape change and deformation of the solid object in response to external forces, denoted by strain. The next sections of this chapter are devoted to defining these two elements and their relevant components.

物理代写|力学代写mechanics代考|DEFINITION OF STRESS

In general, stress is defined as average force acting over an area. This area may be a surface, or an imaginary plane inside a material. Since the stress is a force per unit area, as given in the equation below, it is independent of the size of the body.
$$\sigma=\frac{\text { Force }}{\text { Area }}=\frac{F}{A}$$
where $\sigma$ is the stress (Pa or psi), $F$ is the force ( $\mathrm{N}$ or lbf) and $A$ represents the surface area $\left(\mathrm{m}^{2}\right.$ or $\left.\mathrm{in}^{2}\right)$.

Stress is also independent of the shape of the body. We will show later that the stress level depends on its orientation. The criterion that governs this is the force balance and the concept of Newton’s second law.

Figure $1.2$ illustrates a simple one-dimensional stress state, where a body is loaded to a uniform stress level of $\sigma_{\text {axial. }}$. Since the body is in equilibrium, an action stress from the left must be balanced by a reaction stress on the right. By defining an arbitrary imaginary plane inside the body, the forces acting on this plane must balance as well, regardless of the orientation of the plane. Two types of stress therefore result from the equilibrium condition; these are the normal stresss, $\sigma$, which acts normal to the plane, and the shear stress, $\tau$, which acts along the plane. The normal stress may result in tensile or compressive failure, and the shear stress in shear failure, where the material is sheared or slipped along a plane.

物理代写|力学代写mechanics代考|DEFINITION OF STRESS

$$\sigma=\frac{\text { Force }}{\text { Area }}=\frac{F}{A}$$

有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。