物理代写|广义相对论代写General relativity代考|MATH7105

如果你也在 怎样代写广义相对论General relativity这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

广义相对论是阿尔伯特-爱因斯坦在1907至1915年间提出的引力理论。广义相对论说,观察到的质量之间的引力效应是由它们对时空的扭曲造成的。

statistics-lab™ 为您的留学生涯保驾护航 在代写广义相对论General relativity方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写广义相对论General relativity代写方面经验极为丰富,各种代写广义相对论General relativity相关的作业也就用不着说。

我们提供的广义相对论General relativity及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础

物理代写|广义相对论代写General relativity代考|Review of Special Relativity

The theory of Special Relativity (SR) was introduced by A. Einstein in 1905. It deals with the observations of inertial observers in the absence of gravity. The theory of General Relativity (GR) that includes gravitation, and thus acceleration, was published in 1915. For English translations, see Einstein (1905). The latter theory predicted the deflection of light near a massive body, like the sun. Shortly after the end of the first world war, a British team, led by A. S. Eddington, confirmed this startling prediction. This made Einstein world famous, even among people who had no particular interest in science.

In relativity, an observation is the assignment of coordinates $x^{\mu}, \mu=$ $0,1,2,3$, for the time and space location of an event. Space is continuous, and functions of the coordinates can be differentiated. Upon partial differentiation with respect to one of the coordinates, the others are held constant. This insures that the coordinates are independent,
$$
x^{\mu},{ }{\nu} \equiv \frac{\partial x^{\mu}}{\partial x^{\nu}}=\delta^{\mu}{ }{\nu}=\delta_{\nu}{ }^{\mu}=1, \quad \mu=\nu, \quad \delta^{\mu}{ }{\nu}=0, \quad \mu \neq \nu . $$ As will be seen $\delta^{\mu}{ }{\nu}$ is the Kronecker delta tensor. The superscript, subscript indexes are termed contravariant, covariant. Note the shorthand notation for the partial derivative, by use of a comma. Such a shorthand will keep some of the formulas of GR, with many partial derivatives, to a reasonable length.

物理代写|广义相对论代写General relativity代考|Lorentz Transform

Two observers $\mathrm{O}$ and $\mathrm{O}^{\prime}$ are considered. They use parallel axes and rectangular coordinates. Rotations, like those in Fig. 1.1, allow them to align their $z$-axes along the relative velocity. $\mathrm{O}$ uses $x^{\mu}$, and says $\mathrm{O}^{\prime}$ is moving in the $z$-direction with speed $V(<1)$, while $\mathrm{O}^{\prime}$ uses $x^{\mu^{\prime}}$, and says $\mathrm{O}$ is moving in the $-z$-direction with speed $V$.

When their origins overlapped, the clocks were synchronized $t=x^{0}=$ $t^{\prime}=x^{0^{\prime}}=0$. In this geometry, $(x, y)=\left(x^{\prime}, y^{\prime}\right)$ or $x^{1,2}=x^{1^{\prime}, 2^{\prime}}$, as there is no relative motion in these directions. However, $c=1$ for both observers, so space and time are interconnected, and now termed spacetime. If $\mathrm{O}^{\prime}$ says that events led to changes in coordinates $d z^{\prime}=d x^{3^{\prime}}$ and $d t^{\prime}=d x^{0^{\prime}}$, the components of the displacement vector $d r^{\mu^{\prime}}$, then $\mathrm{O}$ would calculate from the chain rule of differential calculus,
$$
\begin{aligned}
d x^{3} &=d z=\frac{\partial z}{\partial z^{\prime}} d z^{\prime}+\frac{\partial z}{\partial t^{\prime}} d t^{\prime}+\frac{\partial z}{\partial x^{\prime}} d x^{\prime}+\frac{\partial z}{\partial y^{\prime}} d y^{\prime} \equiv x^{3}, \mu^{\prime} d x^{\mu^{\prime}} \
&=x^{3}, 3^{\prime} d x^{3^{\prime}}+x^{3}, 0^{\prime} d x^{0^{\prime}} \
d x^{0} &=d t=\frac{\partial t}{\partial z^{\prime}} d z^{\prime}+\frac{\partial t}{\partial t^{\prime}} d t^{\prime}+\frac{\partial t}{\partial x^{\prime}} d x^{\prime}+\frac{\partial t}{\partial y^{\prime}} d y^{\prime} \equiv x^{0}, \mu^{\prime} d x^{\mu^{\prime}} \
&=x^{0}, 3^{\prime} d x^{3^{\prime}}+x^{0}, 0^{\prime} d x^{0^{\prime}}
\end{aligned}
$$
One notes that, similar to rotations, this transform can be represented by matrix multiplication,
$$
\left(\begin{array}{l}
d x^{0} \
d x^{1} \
d x^{2} \
d x^{3}
\end{array}\right)=\left(\begin{array}{cccc}
x^{0}, 0^{\prime} & 0 & 0 & x^{0}, 3^{\prime} \
0 & 1 & 0 & 0 \
0 & 0 & 1 & 0 \
x^{3}, 0^{\prime} & 0 & 0 & x^{3}, 3^{\prime}
\end{array}\right)\left(\begin{array}{l}
d x^{0^{\prime}} \
d x^{1^{\prime}} \
d x^{2^{\prime}} \
d x^{3^{\prime}}
\end{array}\right) .
$$

物理代写|广义相对论代写General relativity代考|MATH7105

广义相对论代考

物理代写|广义相对论代写General relativity代考|Review of Special Relativity

狭义相对论 (SR) 由 A. Einstein 于 1905 年提出。它涉及惯性观察者在没有引力的情况下的观察。广义相对论 (GR) 包括万有引力和加速度,于 1915 年出版。有关英文翻译,请参阅 Einstein (1905)。后一种理论预测了光在 像太阳这样的大质量物体附近的偏转。第一次世界大战结束后不久,由 AS Eddington 领导的英国团队证实了这 一惊人的预测。这使爱因斯坦举世闻名,即使在对科学没有特别兴趣的人中也是如此。
在相对论中,观察是坐标的分配 $x^{\mu}, \mu=0,1,2,3$ ,用于事件的时间和空间位置。空间是连续的,坐标的功能可 以微分。在相对于其中一个坐标进行偏微分时,其他坐标保持不变。这确保了坐标是独立的,
$$
x^{\mu}, \nu \equiv \frac{\partial x^{\mu}}{\partial x^{\nu}}=\delta^{\mu} \nu=\delta_{\nu}^{\mu}=1, \quad \mu=\nu, \quad \delta^{\mu} \nu=0, \quad \mu \neq \nu .
$$
正如将要看到的 $\delta^{\mu} \nu$ 是克罗内克三角洲张量。上标、下标索引称为逆变、协变。注意偏导数的简写符号,使用逗 号。这样的速记将使具有许多偏导数的 GR 的一些公式保持合理的长度。

物理代写|广义相对论代写General relativity代考|Lorentz Transform

两名观察员 $\mathrm{O}$ 和 $\mathrm{O}^{\prime}$ 被考虑。它们使用平行轴和直角坐标。旋转,如图 $1.1$ 中的那些,允许它们对齐它们的 $z$-沿相 对速度的轴。 $\mathrm{O}$ 用途 $x^{\mu}$ ,并说 $\mathrm{O}^{\prime}$ 正在移动 $z$ – 速度方向 $V(<1)$ ,尽管 $\mathrm{O}^{\prime}$ 用途 $x^{\mu^{\prime}}$ ,并说 $\mathrm{O}$ 正在移动 $-z$ – 速度方 向 $V$.
当它们的起源重呾时,时钟是同步的 $t=x^{0}=t^{\prime}=x^{0^{\prime}}=0$. 在这个几何中, $(x, y)=\left(x^{\prime}, y^{\prime}\right)$ 或者 $x^{1,2}=x^{1^{\prime}, 2^{\prime}}$ ,因为在这些方向上没有相对运动。然而, $c=1$ 对于两个观察者来说,空间和时间是相互关联 的,现在称为时空。如果 $\mathrm{O}^{\prime}$ 说事件导致坐标的变化 $d z^{\prime}=d x^{3^{\prime}}$ 和 $d t^{\prime}=d x^{0^{\prime}}$ ,位移向量的分量 $d r^{\mu^{\prime}}$ ,然后 $\mathrm{O}$ 将 根据微积分的链式法则计算,
$$
d x^{3}=d z=\frac{\partial z}{\partial z^{\prime}} d z^{\prime}+\frac{\partial z}{\partial t^{\prime}} d t^{\prime}+\frac{\partial z}{\partial x^{\prime}} d x^{\prime}+\frac{\partial z}{\partial y^{\prime}} d y^{\prime} \equiv x^{3}, \mu^{\prime} d x^{\mu^{\prime}} \quad=x^{3}, 3^{\prime} d x^{3^{\prime}}+x^{3}, 0^{\prime} d x^{0^{\prime}} d x^{0}
$$
有人注意到,与旋转类似,这种变换可以用矩阵乘法来表示,
$$
\left(d x^{0} d x^{1} d x^{2} d x^{3}\right)=\left(x^{0}, 0^{\prime} \quad 0 \quad 0 \quad x^{0}, 3^{\prime} 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 x^{3}, 0^{\prime} \quad 0 \quad 0 \quad x^{3}, 3^{\prime}\right)\left(d x^{0^{\prime}}\right.
$$

物理代写|广义相对论代写General relativity代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。