如果你也在 怎样代写流体力学Fluid Mechanics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。
流体力学是物理学的一个分支,涉及流体(液体、气体和等离子体)的力学和对它们的力。它的应用范围很广,包括机械、土木工程、化学和生物医学工程、地球物理学、海洋学、气象学、天体物理学和生物学。
statistics-lab™ 为您的留学生涯保驾护航 在代写流体力学Fluid Mechanics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写流体力学Fluid Mechanics代写方面经验极为丰富,各种代写流体力学Fluid Mechanics相关的作业也就用不着说。
我们提供的流体力学Fluid Mechanics及其相关学科的代写,服务范围广, 其中包括但不限于:
- Statistical Inference 统计推断
- Statistical Computing 统计计算
- Advanced Probability Theory 高等概率论
- Advanced Mathematical Statistics 高等数理统计学
- (Generalized) Linear Models 广义线性模型
- Statistical Machine Learning 统计机器学习
- Longitudinal Data Analysis 纵向数据分析
- Foundations of Data Science 数据科学基础
物理代写|流体力学代写Fluid Mechanics代考|already explained in the previous
As already explained in the previous chapter on the fundamental laws of continuum mechanics, bodies behave in such a way that the universal balances of mass, momentum, energy and entropy are satisfied. Yet only in very few cases, like, for example, the idealizations of a point mass or of a rigid body without heat conduction, are these laws enough to describe a body’s behavior. In these special cases, the characteristics of “mass” and “mass distribution” belonging to each body are the only important features. In order to describe a deformable medium, the material from which it is made must be characterized, because clearly, the deformation or the rate of deformation under a given load is dependent on the material. Because the balance laws yield more unknowns than independent equations, we can already conclude that a specification of the material through relationships describing the way in which the stress and heat flux vectors depend on the other field quantities is generally required. Thus the balance laws yield more unknowns than independent equations. The summarizing list of the balance laws of mass (2.2)
$$
\frac{\partial \varrho}{\partial t}+\frac{\partial}{\partial x_{i}}\left(\varrho u_{i}\right)=0
$$
of momentum (2.38)
$$
\varrho \frac{D u_{i}}{D t}=\varrho k_{i}+\frac{\partial \tau_{j i}}{\partial x_{j}}
$$
of angular momentum (2.53)
$$
\tau_{i j}=\tau_{j i}
$$
and of energy (2.119)
$$
\varrho \frac{D e}{D t}=\tau_{i j} \frac{\partial u_{i}}{\partial x_{j}}-\frac{\partial q_{i}}{\partial x_{i}}
$$
yield 17 unknown functions $\left(\varrho, u_{i}, \tau_{i j}, q_{i}, e\right)$ in only eight independently available equations. Instead of the energy balance, we could also use the entropy balance (2.134) here, which would introduce the unknown function $s$ instead of $e$, but by doing this the number of equations and unknown functions would not change. Of course we could solve this system of equations by specifying nine of the unknown functions arbitrarily, but the solution found is then not a solution to a particular technical problem.
物理代写|流体力学代写Fluid Mechanics代考|The final condition
The final condition is here of particular importance, since, as we know from Sect. $2.4$, the equations of motion (momentum balance) are not frame independent in this sense. In accelerating reference frames, the apparent forces are introduced, and only the axiom of objectivity ensures that this remains the only difference for the transition from an inertial system to a relative system. However, it is clear that an observer in an accelerating reference frame detects the same material properties as an observer in an inertial system. To illustrate this, for a given deflection of a massless spring, an observer in a rotating reference frame would detect exactly the same force as in an inertial frame.
In so-called simple fluids, the stress on a material point at time $t$ is determined by the history of the deformation involving only gradients of the first order or more exactly, by the relative deformation tensor (relative Cauchy-Green-tensor) as every fluid is isotropic. Essentially all non-Newtonian fluids belong to this group.
The most simple constitutive relation for the stress tensor of a viscous fluid is a linear relationship between the components of the stress tensor $\tau_{i j}$ and those of the rate of deformation tensor $e_{i j}$. Almost trivially, this constitutive relation satisfies all the above axioms. The material theory shows that the most gêneraal linéar rèlationship of this kind must be of the form
$$
\tau_{i j}=-p \delta_{i j}+\lambda^{} e_{k k} \delta_{i j}+2 \eta e_{i j} $$ or, using the unit tensor $\mathbf{I}$ $$ \mathbf{T}=\left(-p+\hat{\lambda}^{} \nabla \cdot \vec{u}\right) \mathbf{I}+2 \eta \mathbf{E}
$$
(Cauchy-Poisson law), so that noting the decomposition (2.35), the tensor of the friction stresses is given by
$$
P_{i j}=\lambda^{*} e_{k k} \delta_{i j}+2 \eta e_{i j}
$$
or
$$
\mathbf{P}=\lambda^{} \nabla \cdot \vec{u} \mathbf{I}+2 \eta \mathbf{E} $$ We next note that the friction stresses at the position $\vec{x}$ are given by the rate of deformation tensor $e_{i j}$ at $\vec{x}$, and are not explicitly dependent on $\vec{x}$ itself. Since the friction stress tensor $P_{i j}$ at $\vec{x}$ determines the stress acting on the material particle at $\vec{x}$, we conclude that the stress on the particle only depends on the instantaneous value of the rate of deformation tensor and is not influenced by the history of the deformation. We remind ourselves that for a fluid at rest or for a fluid undergoing rigid body motion, $e_{i j}=0$, and (3.1a) reduces to (2.33). The quantities $\lambda^{}$ and $\eta$ are scalar functions of the thermodynamic state, typical to the material. Thus (3.1a, $3.1 \mathrm{~b})$ is the generalization of $\tau=\eta \dot{\gamma}$, which we have already met in connection with simple shearing flow and defines the Newtonian fluid.
The extraordinary importance of the linear relationship ( $3.1 \mathrm{a}, 3.1 \mathrm{~b})$ lies in the fact that it describes the actual material behavior of most technically important fluids very well. This includes practically all gases, in particular air and steam, gas mixtures and all liquids of low molecular weight, like water, and also all mineral oils.
物理代写|流体力学代写Fluid Mechanics代考|Here k is a positive function of the thermodynamic
Here $\lambda$ is a positive function of the thermodynamic state, and is called the thermal conductivity. The minus sign here is in agreement with the inequality (2.141). Experiments show that this linear law describes the actual behavior of materials very well. The dependency of the thermal conductivity on $p$ and $T$ remains open in (3.8), and has to be determined experimentally. For gases the kinetic theory leads to the result $\lambda \sim \eta$, so that the thermal conductivity shows the same temperature dependence as the shear viscosiry. (For liquids, one discovers theorerically thar the thermal conductivity is proportional to the velocity of sound in the fluid.)
In the limiting case $\eta, \lambda^{}=0$, we extract from the Cauchy-Poisson law the constitutive relation for inviscid fluids $$ \tau_{i j}=-p \delta_{i j} $$ Thus, as with a fluid at rest, the stress tensor is only determined by the pressure $p$. As far as the stress state is concerned, the limiting case $\eta, \lambda^{}=0$ leads to the sảmé result as $e_{i j}=0$. Also consistênt with $\eta, \lambda^{*}=0$ is the casse $\lambda=0$; ignoring the friction stresses implies that we should in general also ignore the heat conduction.
It would now appear that there is no technical importance attached to the condition $\eta, \lambda *, \lambda=0$. Yet the opposite is actually the case. Many technically important, real flows are described very well using this assumption. This has already been stressed in connection with the flow through turbomachines. Indeed the flow past a flying object can often be predicted using the assumption of inviscid flow. The reason for this can be clearly seen when we note that fluids which occur in applications (mostly air or water) only have “small” viscosities. However, the viscosity is a dimensional quantity, and the expression “small viscosity” is vague, since the numerical value of the physical quantity “viscosity” may be arbitrarily changed by suitable choice of the units in the dimensional formula. The question of whether the viscosity is small or not can only be settled in connection with the specific problem, however this is already possible using simple dimensional arguments. For incompressible fluids, or by using Stokes’ relation (3.5), only the shear viscosity appears in the constitutive relation (3.1a, 3.1b). If, in addition, the temperature field is homogeneous, no thermodynamic quantities enter the problem, and the incident flow is determined by the velocity $U$, the density $\varrho$ and the shear viscosity $\eta$. We characterize the body past which the fluid flows by its typical length $L$, and we form the dimensionless quantity
$$
R e=\frac{U L \varrho}{\eta}=\frac{U L}{v}
$$
流体力学代写
物理代写|流体力学代写Fluid Mechanics代考|already explained in the previous
正如前一章关于连续介质力学基本定律的解释,物体的行为方式是满足质量、动量、能量和熵的普遍平衡。然而,只有在极少数情况下,例如点质量或没有热传导的刚体的理想化,这些定律才足以描述物体的行为。在这些特殊情况下,属于每个身体的“质量”和“质量分布”的特征是唯一重要的特征。为了描述可变形介质,必须对制造它的材料进行表征,因为很明显,在给定载荷下的变形或变形率取决于材料。因为平衡定律比独立方程产生更多的未知数,我们已经可以得出结论,通常需要通过描述应力和热通量矢量依赖于其他场量的方式的关系来规范材料。因此,平衡定律比独立方程产生更多的未知数。质量平衡定律总结表(2.2)
∂ϱ∂吨+∂∂X一世(ϱ在一世)=0
动量 (2.38)
ϱD在一世D吨=ϱķ一世+∂τj一世∂Xj
角动量 (2.53)
τ一世j=τj一世
和能量 (2.119)
ϱD和D吨=τ一世j∂在一世∂Xj−∂q一世∂X一世
产生 17 个未知函数(ϱ,在一世,τ一世j,q一世,和)只有八个独立可用的方程。除了能量平衡,我们也可以在这里使用熵平衡(2.134),这将引入未知函数s代替和,但是通过这样做,方程和未知函数的数量不会改变。当然,我们可以通过任意指定九个未知函数来解决这个方程组,但是找到的解决方案并不是针对特定技术问题的解决方案。
物理代写|流体力学代写Fluid Mechanics代考|The final condition
最后的条件在这里特别重要,因为正如我们从教派中知道的那样。2.4,运动方程(动量平衡)在这个意义上不是框架独立的。在加速参考系中,引入了视在力,只有客观性公理才能确保这仍然是从惯性系统到相对系统过渡的唯一区别。然而,很明显,加速参考系中的观察者检测到的材料特性与惯性系统中的观察者相同。为了说明这一点,对于给定的无质量弹簧偏转,旋转参考系中的观察者将检测到与惯性系中完全相同的力。
在所谓的简单流体中,在某个时间点上的应力吨由仅涉及一阶梯度或更准确地说,由相对变形张量(相对 Cauchy-Green-张量)决定的变形历史决定,因为每种流体都是各向同性的。基本上所有非牛顿流体都属于这一组。
粘性流体的应力张量最简单的本构关系是应力张量分量之间的线性关系τ一世j和变形率张量和一世j. 这种本构关系几乎可以满足上述所有公理。物质理论表明,这种最一般的线性关系必须是
τ一世j=−pd一世j+λ和ķķd一世j+2这和一世j或者,使用单位张量我
吨=(−p+λ^∇⋅在→)我+2这和
(Cauchy-Poisson 定律),因此注意到分解 (2.35),摩擦应力的张量由下式给出
磷一世j=λ∗和ķķd一世j+2这和一世j
或者
磷=λ∇⋅在→我+2这和我们接下来注意到该位置处的摩擦应力X→由变形张量的速率给出和一世j在X→,并且不明确依赖于X→本身。由于摩擦应力张量磷一世j在X→确定作用在材料颗粒上的应力X→,我们得出结论,粒子上的应力仅取决于变形张量速率的瞬时值,不受变形历史的影响。我们提醒自己,对于静止的流体或经历刚体运动的流体,和一世j=0, 并且 (3.1a) 简化为 (2.33)。数量λ和这是热力学状态的标量函数,是材料的典型特征。因此(3.1a,3.1 b)是的概括τ=这C˙,我们已经在简单的剪切流中遇到过它并定义了牛顿流体。
线性关系的非凡重要性(3.1一个,3.1 b)在于它很好地描述了大多数技术上重要的流体的实际材料行为。这实际上包括所有气体,特别是空气和蒸汽、气体混合物和所有低分子量液体,如水,以及所有矿物油。
物理代写|流体力学代写Fluid Mechanics代考|Here k is a positive function of the thermodynamic
这里λ是热力学状态的正函数,称为热导率。这里的减号与不等式(2.141)一致。实验表明,这种线性定律很好地描述了材料的实际行为。热导率的依赖性p和吨在 (3.8) 中保持打开状态,并且必须通过实验确定。对于气体,动力学理论导致结果λ∼这,因此热导率表现出与剪切粘度相同的温度依赖性。(对于液体,理论上人们发现热导率与流体中的声速成正比。)
在极限情况下这,λ=0, 我们从 Cauchy-Poisson 定律中提取无粘性流体的本构关系
τ一世j=−pd一世j因此,与静止的流体一样,应力张量仅由压力决定p. 就应力状态而言,极限情况这,λ=0导致 sảmé 结果为和一世j=0. 也符合这,λ∗=0是案例λ=0; 忽略摩擦应力意味着我们通常也应该忽略热传导。
现在看来,该条件没有技术重要性这,λ∗,λ=0. 然而事实恰恰相反。许多技术上重要的、真实的流量都使用这个假设很好地描述了。这已经在与流过涡轮机有关的情况下得到强调。实际上,通常可以使用无粘性流动的假设来预测经过飞行物体的流动。当我们注意到应用中出现的流体(主要是空气或水)只有“小”粘度时,就可以清楚地看到其原因。However, the viscosity is a dimensional quantity, and the expression “small viscosity” is vague, since the numerical value of the physical quantity “viscosity” may be arbitrarily changed by suitable choice of the units in the dimensional formula. 粘度是否小,只能结合具体问题来解决,然而,这已经可以使用简单的维度参数来实现。对于不可压缩流体,或通过使用斯托克斯关系(3.5),只有剪切粘度出现在本构关系(3.1a,3.1b)中。此外,如果温度场是均匀的,则没有热力学量进入问题,入射流由速度决定在, 密度ϱ和剪切粘度这. 我们通过其典型长度来描述流体流过的物体大号,我们形成无量纲量
R和=在大号ϱ这=在大号在
统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。
金融工程代写
金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。
非参数统计代写
非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。
广义线性模型代考
广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。
术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。
有限元方法代写
有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。
有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。
tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。
随机分析代写
随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
时间序列分析代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。
回归分析代写
多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。