物理代写|理论力学代写theoretical mechanics代考|PHYS2201

如果你也在 怎样代写理论力学theoretical mechanics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

理论力学主要研究物体的力学性能及运动规律,是力学的基础学科,由静力学、运动学和动力学三大部分组成。也有人认为运动学是动力学的一部分,而提出二分法。

statistics-lab™ 为您的留学生涯保驾护航 在代写理论力学theoretical mechanics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写理论力学theoretical mechanics代写方面经验极为丰富,各种代写理论力学theoretical mechanics相关的作业也就用不着说。

我们提供的理论力学theoretical mechanics及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
物理代写|理论力学代写theoretical mechanics代考|PHYS2201

物理代写|理论力学代写theoretical mechanics代考|Curl (Vortex Density)

The curl (rotation) of the vector field $\mathbf{a}(\mathbf{r})$ is the vector field
$$
\operatorname{rot} \mathbf{a} \equiv \nabla \times \mathbf{a} \equiv \lim {V \rightarrow 0} \frac{1}{V} \int{(V)} \mathbf{d} \mathbf{f} \times \mathbf{a}
$$
For the above-mentioned cube with the edges $\mathrm{d} x, \mathrm{~d} y, \mathrm{~d} z$, the $x$-component of the right-hand expression is equal to
$$
\frac{1}{\mathrm{~d} x \mathrm{~d} y \mathrm{~d} z}\left[+\mathrm{d} z \mathrm{~d} x\left{a_{z}(x, y+\mathrm{d} y, z)-a_{z}(x, y, z)\right}\right.
$$
$$
\left.-\mathrm{d} x \mathrm{~d} y\left{a_{y}(x, y, z+\mathrm{d} z)-a_{y}(x, y, z)\right}\right]=\frac{\partial a_{z}}{\partial y}-\frac{\partial a_{y}}{\partial z} .
$$
With $\partial_{i} \equiv 1 / \partial x_{i}$, we thus have
which is the vector product of the operators $\nabla$ and a. This explains the notation $\boldsymbol{\nabla} \times \mathbf{a}$. Moreover, we have
$$
\int_{V} \mathrm{~d} V \nabla \times \mathbf{a}=\int_{(V)} \mathrm{d} \mathbf{f} \times \mathbf{a}
$$
for all continuous vector fields, although they may become singular point-wise, and even along lines, as will become apparent shortly.
An important result is Stokes’s theorem
$$
\int_{A} \mathrm{df} \cdot(\nabla \times \mathbf{a})=\int_{(A)} \mathrm{d} \mathbf{r} \cdot \mathbf{a}
$$
where $\mathrm{df}$ is taken in the rotational sense on the edge $(A)$ and forms a right=hand screw.

物理代写|理论力学代写theoretical mechanics代考|Delta Function

In the following, we shall often use the Dirac delta function. Therefore, its properties are compiled here, even though it does not actually belong to vector analysis, but to general analysis (and in particular to integral calculus).
We start with the Kronecker symbol
$$
\delta_{i k}= \begin{cases}0 & \text { for } i \neq k \ 1 & \text { for } i=k\end{cases}
$$
It is useful for many purposes. In particular we may use it to filter out the $k$ th element of a sequence $\left{f_{i}\right}$ :
$$
f_{k}=\sum_{i} f_{i} \delta_{i k} .
$$
Here, of course, within the sum, one of the $i$ has to take the value $k$. Now, if we make the transition from the countable (discrete) variables $i$ to a continuous quantity $x$, then we must also generalize the Kronecker symbol. This yields Dirac’s delta function $\delta\left(x-x^{\prime}\right)$. It is defined by the equation
$$
f\left(x^{\prime}\right)=\int_{a}^{b} f(x) \delta\left(x-x^{\prime}\right) \mathrm{d} x \quad \text { for } a<x^{\prime}<b, \text { zero otherwise },
$$
where $f(x)$ is an arbitrary continuous test function. If the variable $x$ (and hence also $\mathrm{d} x)$ is a physical quantity with unit $[x]$, the delta function has the unit $[x]^{-1}$.

Obviously, the delta function $\delta\left(x-x^{\prime}\right)$ is not an ordinary function, because it has to vanish for $x \neq x^{\prime}$ and it has to be singular for $x=x^{\prime}$, so that the integral becomes $\int \delta\left(x-x^{\prime}\right) \mathrm{d} x=1$. Consequently, we have to extend the concept of a function: $\delta\left(x-x^{\prime}\right)$ is a distribution, or generalized function, which makes sense only as a weight factor in an integrand, while an ordinary function $y=f(x)$ is a map $x \rightarrow y$. Every equation in which the delta function appears without an integral symbol is an equation between integrands: on both sides of the equation, the integral symbol and the test function have been left out.
The delta function is the derivative of the Heaviside step function:
$$
\varepsilon\left(x-x^{\prime}\right)=\left{\begin{array}{ll}
0 & \text { for } xx^{\prime}
\end{array} \quad \Longrightarrow \quad \delta(x)=\varepsilon^{\prime}(x)\right.
$$

物理代写|理论力学代写theoretical mechanics代考|Fourier Transform

If the region of definition is infinite on both sides, we use
$$
f(x)=\int_{-\infty}^{\infty} g(k, x) f(k) \mathrm{d} k, \quad f(k)=\int_{-\infty}^{\infty} g^{}(k, x) f(x) \mathrm{d} x $$ with $g(k, x)=1 / \sqrt{2 \pi} \exp (\mathrm{i} k x)$ : $$ \begin{aligned} &f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp (+\mathrm{i} k x) f(k) \mathrm{d} k \ &f(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp (-\mathrm{i} k x) f(x) \mathrm{d} x \end{aligned} $$ Generally, $f(x)$ and $f(k)$ are different functions of their arguments, but we would like to distinguish them only through their argument. [The less symmetric notation $f(x)=\int \exp (\mathrm{i} k x) F(k) \mathrm{d} k$ with $F(k)=f(k) / \sqrt{2 \pi}$ is often used. This avoids the square root factor with the agreement that $(2 \pi)^{-1}$ always appears with $\mathrm{d} x$.] Instead of the pair of variables $x \leftrightarrow k$, the pair $t \leftrightarrow \omega$ is also often used. Important properties of the Fourier transform are $f(x)=f^{}(x) \quad \Longleftrightarrow \quad f(k)=f^{*}(-k)$,
$f(x)=g(x) h(x) \Longleftrightarrow f(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} g\left(k-k^{\prime}\right) h\left(k^{\prime}\right) \mathrm{d} k^{\prime}$,
$f(x)=g\left(x-x^{\prime}\right) \quad \Longleftrightarrow \quad f(k)=\exp \left(-\mathrm{i} k x^{\prime}\right) g(k) .$
For a periodic function $f(x)=f(x-l)$ the last relation leads to the condition $k_{n}=$ $2 \pi n / l$ with $n \in{0, \pm 1, \pm 2, \ldots}$, thus to a Fourier series instead of the integral. In addition, by Fourier transform, all convolution integrals $\int g\left(x-x^{\prime}\right) h\left(x^{\prime}\right) \mathrm{d} x^{\prime}$ can clearly be turned into products $\sqrt{2 \pi} g(k) h(k)$ (Problem 3.9), which are much easier to handle.

物理代写|理论力学代写theoretical mechanics代考|PHYS2201

理论力学代考

物理代写|理论力学代写theoretical mechanics代考|Curl (Vortex Density)

矢量场的旋度 (旋转) $\mathbf{a}(\mathbf{r})$ 是向量场
$$
\operatorname{rot} \mathbf{a} \equiv \nabla \times \mathbf{a} \equiv \lim V \rightarrow 0 \frac{1}{V} \int(V) \mathbf{d} \mathbf{f} \times \mathbf{a}
$$
对于上述带边的立方体 $\mathrm{d} x, \mathrm{~d} y, \mathrm{~d} z ,$ 这 $x$ – 右手表达式的分量等于
$\backslash$ frac ${1} \backslash \backslash$ mathrm ${\sim \mathrm{d}} \times \backslash m a t h r m{\sim \mathrm{d}}$ y $\backslash$ mathrm ${\sim \mathrm{d}}$ z $} \backslash$ left $\left[+\backslash m a t h r m{\mathrm{~d}} \mathrm{z} \backslash \mathrm{mathrm}{\sim \mathrm{d}} \mathrm{x} \backslash\right.$ left $\left{\mathrm{a}{-}{\mathrm{z}}(\mathrm{x}, \mathrm{y}+\backslash \mathrm{mathrm}{\mathrm{d}}\right.$ y, $\mathrm{z})-\mathrm{a}{-}{$
Veft.-\mathrm{d} x \mathrm{ ${\mathrm{d}} \mathrm{~ y ~ \ l e f t}$
和 $\partial_{i} \equiv 1 / \partial x_{i}$ ,因此我们有
哪个是运算符的向量积 $\nabla$ 和一个。这解释了符号 $\boldsymbol{\nabla} \times \mathbf{a}$. 此外,我们有
$$
\int_{V} \mathrm{~d} V \nabla \times \mathbf{a}=\int_{(V)} \mathrm{d} \mathbf{f} \times \mathbf{a}
$$
对于所有连续向量场,尽管它们可能会逐点变得奇异,甚至沿线变得奇异,这将很快变得显而易见。
一个重要的结果是斯托克斯定理
$$
\int_{A} \mathrm{df} \cdot(\nabla \times \mathbf{a})=\int_{(A)} \mathrm{d} \mathbf{r} \cdot \mathbf{a}
$$
在哪里df是在边缘的旋转方向上拍摄的 $(A)$ 并形成一个右 $=$ 手螺丝。

物理代写|理论力学代写theoretical mechanics代考|Delta Function

下面,我们将经常使用狄拉克函数。因此,这里编译它的性质,尽管它实际上并不属于向量分析,而是属于一般分 析 (尤其是积分)。
我们从克罗内克符号开始
$$
\delta_{i k}={0 \quad \text { for } i \neq k 1 \quad \text { for } i=k
$$
它可用于许多目的。特别是我们可以用它来过滤掉 $k$ 序列的第一个元素[left{f_{i}\right} :
$$
f_{k}=\sum_{i} f_{i} \delta_{i k} .
$$
这里,当然,在总和中,其中之一i必须取值 $k$. 现在,如果我们从可数 (离散) 变量进行转换 $i$ 到一个连续的量 $x$ , 那么我们还必须推广克罗内克符号。这产生了狄拉克的 delta 函数 $\delta\left(x-x^{\prime}\right)$. 它由等式定义
$$
f\left(x^{\prime}\right)=\int_{a}^{b} f(x) \delta\left(x-x^{\prime}\right) \mathrm{d} x \quad \text { for } a<x^{\prime}<b, \text { zero otherwise }
$$
在哪里 $f(x)$ 是一个任意的连续测试函数。如果变量 $x$ (因此也 $\mathrm{d} x$ ) 是有单位的物理量 $[x]$, delta 函数有单位 $[x]^{-1}$.
显然,delta函数 $\delta\left(x-x^{\prime}\right)$ 不是一个普通的函数,因为它必须消失 $x \neq x^{\prime}$ 它必须是单数的 $x=x^{\prime}$ ,使得积分变为 $\int \delta\left(x-x^{\prime}\right) \mathrm{d} x=1$. 因此,我们必须扩展函数的概念: $\delta\left(x-x^{\prime}\right)$ 是分布或广义函数,仅作为被积函数中的权 重因子才有意义,而普通函数 $y=f(x)$ 是一张地图 $x \rightarrow y$. delta函数出现而没有积分符号的每一个方程都是被积 函数之间的方程: 在方程的两边,积分符号和测试函数都被省略了。
delta 函数是 Heaviside 阶跃函数的导数:
$\$ \$$
Ivarepsilon $\backslash$ left $(x x \wedge{\backslash$ prime} $\backslash$ right $)=\backslash \operatorname{left}{$
0 for $x x^{\prime}$
Iquad ILongrightarrow \quad Idelta $(x)=$ Ivarepsilon^{1prime $}(x) \backslash$ right.
$\$ \$$

物理代写|理论力学代写theoretical mechanics代考|Fourier Transform

如果定义区域在两边都是无限的,我们使用
$$
f(x)=\int_{-\infty}^{\infty} g(k, x) f(k) \mathrm{d} k, \quad f(k)=\int_{-\infty}^{\infty} g(k, x) f(x) \mathrm{d} x
$$
和 $g(k, x)=1 / \sqrt{2 \pi} \exp (\mathrm{i} k x)$ :
$$
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp (+\mathrm{i} k x) f(k) \mathrm{d} k \quad f(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp (-\mathrm{i} k x) f(x) \mathrm{d} x
$$
一般来说, $f(x)$ 和 $f(k)$ 是它们参数的不同功能,但我们只想通过它们的参数来区分它们。[不太对称的符号 $f(x)=\int \exp (\mathrm{i} k x) F(k) \mathrm{d} k$ 和 $F(k)=f(k) / \sqrt{2 \pi}$ 经常使用。这避免了平方根因子与协议 $(2 \pi)^{-1}$ 总是出现 $\mathrm{d} x$ .] 而不是一对变量 $x \leftrightarrow k$ ,这对 $t \leftrightarrow \omega$ 也经常使用。傅里叶变换的重要性质是
$f(x)=f(x) \Longleftrightarrow f(k)=f^{*}(-k)$,
$f(x)=g(x) h(x) \Longleftrightarrow f(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} g\left(k-k^{\prime}\right) h\left(k^{\prime}\right) \mathrm{d} k^{\prime}$
$f(x)=g\left(x-x^{\prime}\right) \Longleftrightarrow f(k)=\exp \left(-\mathrm{i} k x^{\prime}\right) g(k)$
对于周期函数 $f(x)=f(x-l)$ 最后一个关系导致条件 $k_{n}=2 \pi n / l$ 和 $n \in 0, \pm 1, \pm 2, \ldots$ ,因此是傅里叶级数 而不是积分。此外,通过傅里叶变换,所有卷积积分 $\int g\left(x-x^{\prime}\right) h\left(x^{\prime}\right) \mathrm{d} x^{\prime}$ 可以很明显的变成产品
$\sqrt{2 \pi} g(k) h(k)$ (问题 3.9),这更容易处理。

物理代写|理论力学代写theoretical mechanics代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。