### 物理代写|电动力学代写electromagnetism代考|PHYC20014

statistics-lab™ 为您的留学生涯保驾护航 在代写电动力学electrodynamics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写电动力学electrodynamics代写方面经验极为丰富，各种代写电动力学electrodynamics相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 物理代写|电动力学代写electromagnetism代考|General Principles of the Wave Concept Iterative Process

The iterative method, which uses a wave network, is an integrated method and is not based upon electric and magnetic fields, as are, for example, Electrical Field Integral Equation (EFIE), Magnetic Field Integral Equation (MFIE), or more generally the method of moments or a combination of both fields. These are likened to the amplitudes of transverse waves, both diffracting around obstacles and those in space, termed “free space”, owing to the presence of evanescent fields. However, while the method of moments appeals to so-called admittance or impedance operators, within the wave iterative method (Wave Concept Iterative Process (WCIP)), the diffraction operators are restricted, thus leading to the convergence of all iterative processes based upon this particular formalism [BAU 99]

It may be noted that, with the method of moments, the solution to the problem often entails using a restriction in the given field so as to define trial functions that constitute the basis for given solutions. This often leads to both analytical and numerical problems. In the WCIP method, field conditions are simply described on the basis of pixels which make up the entire sphere.

Moreover, the iterative process has a significant resemblance to that used within harmonic equilibrium [KER 75]. Within this latter process the nonlinear component behaves in a way that is described in relation to time, while the rest of the circuit is described within the frequency sphere. The operator thus functions diagonally at given frequencies. With each iteration, we therefore proceed with a Fourier transform (using a time-frequency basis) so as to approach the detailed composition of boundary conditions at the shutdown level. Moreover, when writing equations in terms of components studied over time, an inverse Fourier transform (based upon frequency-time) is used.

## 物理代写|电动力学代写electromagnetism代考|The iterative wave method

The integral form of waves came to be explained during the $1990 \mathrm{~s}$, and was applied to planar circuits and to antennae [BAU 99, AZI 95, AZI 96, WAN 05, RAV 04, TIT 09]. The wave concept principle is as follows:

• The electromagnetic issue may be expressed by the relationship between the two environments. The first is known as the spectral sphere or the external environment. The second is a set of surfaces which are defined by the boundary conditions at each point (termed the spatial domain). An Ao source in the spatial sphere sends a wave with an Ao amplitude towards a vacuum of free space. This wave is partly reflected (by the reaction of the operator $\Gamma$ ) and provides a wave $B$. The latter is, in its turn, reflected within the spatial sphere (the Operator S) giving us the wave $A$.
• The $\Gamma$ operator is diagonal within the spectral sphere. It represents the homogeneous environment and its interaction with electromagnetic waves [BAU 99]. The operator $S$ describes the boundary conditions of the interface. It is expressed within the spatial sphere. The Fourier transform and its converse, the inverse Fourier transform, ensure the passage between both spheres. The relationships between incident and reflective waves are written as shown in [1.1] and [1.2].
\begin{aligned} &\mathrm{B}=\Gamma \mathrm{A} \ &\mathrm{A}-\mathrm{SB}+\mathrm{A}_{0} \end{aligned}
With the first iteration, the spatial sphere equation should be expressed simply as Ao $(B=0)$. $B$ now appears with the operator $\Gamma(B=\Gamma A)$. The equation [1.2] is applied so as to obtain the new value of $A$ placed within [1.1], resulting in the new $B$ value. This iterative process consists in successively applying equations [1.1] and [1.2], until convergence occurs (Figure 1.1).

## 物理代写|电动力学代写electromagnetism代考|The iterative wave method

• 电磁问题可以通过两种环境之间的关系来表达。第一个被称为光谱球或外部环境。第二个是由每个点的边界 条件定义的一组表面（称为空间域）。空间球体中的 $A o$ 源向自由空间的真空发送具有 $A o$ 幅度的波。该波 被部分反射（通过操作员的反应 $\Gamma$ ) 并提供一波 $B$. 后者反过来又在空间球体（算子 $S$ ) 内反射，为我们提供 波 $A$.
• 这 $\Gamma$ 算子在光谱范围内是对角线。它代表了同质环境及其与电磁波的相互作用 [BAU 99]。运营商 $S$ 描述界面 的边界条件。它在空间范围内表达。傅立叶变换及其逆傅立叶变换确保了两个球体之间的通道。入射波和反 射波之间的关系如 [1.1] 和 [1.2] 所示。
$$\mathrm{B}=\Gamma \mathrm{A} \quad \mathrm{A}-\mathrm{SB}+\mathrm{A}_{0}$$
在第一次迭代中，空间球面方程应该简单地表示为 $\mathrm{Ao}(B=0)$. $B$ 现在与操作员一起出现 $\Gamma(B=\Gamma A)$. 应 用等式[1.2]以获得新的值 $A$ 放在 [1.1]内，导致新的 $B$ 价值。这个迭代过程包括连续应用方程 [1.1] 和 [1.2]，直到收敛（图 1.1)。

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。