物理代写|量子场论代写Quantum field theory代考|PHYS8302

如果你也在 怎样代写量子场论Quantum field theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

在理论物理学中,量子场论(QFT)是一个理论框架,它结合了经典场论、狭义相对论和量子力学。QFT在粒子物理学中被用来构建亚原子粒子的物理模型,在凝聚态物理学中被用来构建类粒子的模型。

statistics-lab™ 为您的留学生涯保驾护航 在代写量子场论Quantum field theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写量子场论Quantum field theory代写方面经验极为丰富,各种代写量子场论Quantum field theory相关的作业也就用不着说。

我们提供的量子场论Quantum field theory及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
物理代写|量子场论代写Quantum field theory代考|PHYS8302

物理代写|量子场论代写Quantum field theory代考|Symmetric Tensors

There is a very important twist to the notion of tensor product when one considers systems composed of several, say $n$ identical particles. Identical particles are indistinguishable from each other, even in principle. If an electron in motion scatters on an electron at rest, two moving electrons come out of the experiment and there is no way telling which of them was the electron at rest (and it can be argued that the question may not even make sense). This has to be built in the model. To this aim, we consider a Hilbert space $\mathcal{H}$ with a basis $\left(e_{i}\right){i \geq 1}$, a given integer $n$ and we denote by $\mathcal{H}{n}$ the tensor product of $n$ copies of it, in the above sense. We observe that a permutation $\sigma$ of ${1,2, \ldots, n}$ induces a transformation of $\mathcal{H}{n}$, simply by transforming the basis element $\bigotimes{k \leq n} e_{i_{k}}$ into $\bigotimes_{k \leq n} e_{i_{\sigma(k)}}$. If an element $x$ of $\mathcal{H}_{n}$ describes the state of a system consisting of $n$ identical particles, its image under this transformation describes the same particle system, so that it must be of the type $\lambda x$ for

$\lambda \in \mathbb{C}$. Since the transform of $x$ has the same norm as $x$ then $|\lambda|=1$, that is the transform of $x$ differs from $x$ only by a phase. 10

In Part I of this book we consider the simplest case where the transform of each state $x$ is $x$ itself. Particles with this property are called bosons. 11 These are not the most common and interesting particles, but must be understood first. Later on, we will meet fermions, which comprise most of the important particles (and in particular electrons). Let us denote by $\mathrm{S}_{n}$ the group of permutations of ${1, \ldots, n}$.

物理代写|量子场论代写Quantum field theory代考|Creation and Annihilation Operators

We define and study the operators $A_{n}(\xi)$ and $A_{n}^{\dagger}(\eta)$, which will play a crucial role in the next section. It is convenient here to define $\mathcal{H}{0, s}:=\mathbb{C}$. For $n \geq 1$ and $\xi \in \mathcal{H}$ the operator $A{n}(\xi): \mathcal{H}{n, s} \rightarrow \mathcal{H}{n-1, s}$ transforms an $n$-particle state into an $(n-1)$-particle state, and for this reason is called an annihilation operator. For $n \geq 0$ and $\eta \in \mathcal{H}$ the operator $A_{n}^{\dagger}(\eta)$ : $\mathcal{H}{n, s} \rightarrow \mathcal{H}{n+1, s}$ transforms an $n$-particle state into an $(n+1)$-particle state, and is called a creation operator.

In order to avoid writing formulas which are too abstract, we pick an orthonormal basis $\left(e_{i}\right){i \geq 1}$ of $\mathcal{H}$, so that an element $\eta$ of $\mathcal{H}$ identifies with a sequence $\left(\eta{i}\right){i \geq 1}{ }^{13}$ Similarly we think of an element $\alpha$ of $\mathcal{H}{n, s}$ as a symmetric tensor $\left(\alpha_{i_{1}, \ldots, i_{n}}\right){i{1}, \ldots, i_{n} \geq 1}$.

Let us then introduce an important notation: Given a sequence $i_{1}, \ldots, i_{n+1}$ of length $n+1$ we denote by $i_{1}, \ldots, \hat{i}{k}, \ldots i{n+1}$ the sequence of length $n$ where the term $i_{k}$ is omitted.

物理代写|量子场论代写Quantum field theory代考|Boson Fock Space

A relativistically correct version of Quantum Mechanics must describe systems with a variable number of particles, because the equivalence of mass and energy allows creation and destruction of particles. Let us assume that the space $\mathcal{H}$ describes a single particle. We have constructed in (3.7) the space $\mathcal{H}_{n, s}$ which describes a collection of $n$ identical particles. The boson Fock space will simply be the direct sum of these spaces (in the sense of Hilbert space) as $n \geq 0$ and will describe collections of any number of identical particles. ${ }^{16}$ We do not yet incorporate any idea from Special Relativity. The construction of the boson Fock space is almost trivial. The non-trivial structure of importance is a special family of operators described in Theorem 3.4.2.

For $n=0$ we define $\mathcal{H}{0, s}=\mathbb{C}$, and we denote by $e{\emptyset}$ its basis element (e.g. the number 1 ). The element $e_{\emptyset}$ represents the state where no particles are present, that is, the vacuum. It is of course of fundamental importance. Then we define
$$
\mathcal{B}{0}=\bigoplus{n \geq 0} \mathcal{H}{n, s}, $$ the algebraic sum of the spaces $\mathcal{H}{n, s}$, where again $\mathcal{H}{n, s}$ is the space defined in (3.7). By definition of the algebraic sum, any element $\alpha$ of $\mathcal{B}{0}$ is a sequence $\alpha=(\alpha(n)){n \geq 0}$ with $\alpha(n) \in \mathcal{H}{n, s}$ and $\alpha(n)=0$ for $n$ large enough. Let us denote by $(\cdot, \cdot){n}$ the inner product on $\mathcal{H}{n, s}$. Consider $\alpha(n), \beta(n) \in \mathcal{H}{n, s}$ and $\alpha=(\alpha(n)){n \geq 0}, \beta=(\beta(n)){n \geq 0}$. We define $$ (\alpha, \beta):=\sum{n \geq 0}(\alpha(n), \beta(n)){n} . $$ The boson Fock space $\mathcal{B}$ is the space of sequences $(\alpha(n)){n \geq 0}$ such that $\alpha(n) \in \mathcal{H}{n, s}$ and $$ \left|(\alpha(n)){n \geq 0}\right|^{2}:=\sum_{n \geq 0}|\alpha(n)|^{2}<\infty,
$$
where $|\alpha(n)|$ is the norm in $\mathcal{H}{n, s}$. We will hardly ever need to write down elements of $\mathcal{B}$ which are not in $\mathcal{B}{0}$.

We will somewhat abuse notation by considering each $\mathcal{H}{n, s}$, and in particular $\mathcal{H}=\mathcal{H}{1, s}$, as a subspace of $\mathcal{B}{0}$. Again, $\mathcal{H}{n, s}$ represents the $n$-particle states. Given $\xi, \eta$ in $\mathcal{H}$ we recall the operators $A_{n}(\xi)$ and $A_{n}^{\dagger}(\eta)$ of the previous section.

物理代写|量子场论代写Quantum field theory代考|PHYS8302

量子场论代考

物理代写|量子场论代写Quantum field theory代考|Symmetric Tensors

当考虑由几个组成的系统时,张量积的概念有一个非常重要的转折,比如说n相同的粒子。即使在原则上,相同的粒子也无法相互区分。如果运动中的电子在静止的电子上发生散射,则实验中会出现两个运动的电子,并且无法分辨其中哪一个是静止的电子(可以说这个问题甚至可能没有意义)。这必须在模型中构建。为此,我们考虑一个希尔伯特空间H有依据(和一世)一世≥1, 给定整数n我们表示Hn的张量积n它的副本,在上述意义上。我们观察到一个排列σ的1,2,…,n引发转变Hn, 只需变换基元素⨂ķ≤n和一世ķ进入⨂ķ≤n和一世σ(ķ). 如果一个元素X的Hn描述了一个系统的状态,包括n相同的粒子,它在这种变换下的图像描述了相同的粒子系统,因此它必须是类型λX为了

λ∈C. 自从转型X具有相同的规范X然后|λ|=1,也就是变换X不同于X只是一个阶段。10

在本书的第一部分,我们考虑最简单的情况,其中每个状态的变换X是X本身。具有这种性质的粒子称为玻色子。11 这些不是最常见和最有趣的粒子,但必须首先了解。稍后,我们将遇到费米子,它包含大部分重要的粒子(尤其是电子)。让我们用小号n的排列组1,…,n.

物理代写|量子场论代写Quantum field theory代考|Creation and Annihilation Operators

我们定义和研究运营商一个n(X)和一个n†(这),这将在下一节中发挥至关重要的作用。这里方便定义H0,s:=C. 为了n≥1和X∈H运营商一个n(X):Hn,s→Hn−1,s变换一个n-粒子状态为(n−1)-粒子状态,因此称为湮灭算子。为了n≥0和这∈H运营商一个n†(这) : Hn,s→Hn+1,s变换一个n-粒子状态为(n+1)-粒子状态,称为创建算子。

为了避免写出过于抽象的公式,我们选择标准正交基(和一世)一世≥1的H, 使得一个元素这的H用一个序列标识(这一世)一世≥113同样我们想到一个元素一个的Hn,s作为对称张量(一个一世1,…,一世n)一世1,…,一世n≥1.

然后让我们介绍一个重要的符号:给定一个序列一世1,…,一世n+1长度n+1我们表示一世1,…,一世^ķ,…一世n+1长度序列n术语在哪里一世ķ被省略。

物理代写|量子场论代写Quantum field theory代考|Boson Fock Space

量子力学的相对论正确版本必须描述具有可变数量粒子的系统,因为质量和能量的等价性允许粒子的产生和破坏。我们假设空间H描述单个粒子。我们在 (3.7) 中构建了空间Hn,s它描述了一个集合n相同的粒子。玻色子福克空间将简单地是这些空间的直接和(在希尔伯特空间的意义上)为n≥0并将描述任意数量的相同粒子的集合。16我们还没有纳入狭义相对论的任何想法。玻色子福克空间的构造几乎是微不足道的。重要性的非平凡结构是定理 3.4.2 中描述的特殊运算符族。

为了n=0我们定义H0,s=C,我们表示为和∅它的基本元素(例如数字 1 )。元素和∅表示没有粒子存在的状态,即真空。当然,它具有根本性的重要性。然后我们定义

乙0=⨁n≥0Hn,s,空间的代数和Hn,s, 又在哪里Hn,s是(3.7)中定义的空间。根据代数和的定义,任何元素一个的乙0是一个序列一个=(一个(n))n≥0和一个(n)∈Hn,s和一个(n)=0为了n足够大。让我们用(⋅,⋅)n内积Hn,s. 考虑一个(n),b(n)∈Hn,s和一个=(一个(n))n≥0,b=(b(n))n≥0. 我们定义

(一个,b):=∑n≥0(一个(n),b(n))n.玻色子福克空间乙是序列的空间(一个(n))n≥0这样一个(n)∈Hn,s和

|(一个(n))n≥0|2:=∑n≥0|一个(n)|2<∞,
在哪里|一个(n)|是规范Hn,s. 我们几乎不需要写下乙哪些不在乙0.

我们将通过考虑每个Hn,s, 特别是H=H1,s, 作为一个子空间乙0. 再次,Hn,s代表n-粒子状态。给定X,这在H我们召回运营商一个n(X)和一个n†(这)上一节的。

物理代写|量子场论代写Quantum field theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。