如果你也在 怎样代写博弈论Game Theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。
博弈论是对理性主体之间战略互动的数学模型的研究。它在社会科学的所有领域,以及逻辑学、系统科学和计算机科学中都有应用。最初,它针对的是两人的零和博弈,其中每个参与者的收益或损失都与其他参与者的收益或损失完全平衡。在21世纪,博弈论适用于广泛的行为关系;它现在是人类、动物以及计算机的逻辑决策科学的一个总称。
statistics-lab™ 为您的留学生涯保驾护航 在代写博弈论Game Theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写博弈论Game Theory代写方面经验极为丰富,各种代写博弈论Game Theory相关的作业也就用不着说。
我们提供的博弈论Game Theory及其相关学科的代写,服务范围广, 其中包括但不限于:
- Statistical Inference 统计推断
- Statistical Computing 统计计算
- Advanced Probability Theory 高等概率论
- Advanced Mathematical Statistics 高等数理统计学
- (Generalized) Linear Models 广义线性模型
- Statistical Machine Learning 统计机器学习
- Longitudinal Data Analysis 纵向数据分析
- Foundations of Data Science 数据科学基础
经济代写|博弈论代写Game Theory代考|Further Reading
An undergraduate textbook on combinatorial games is Albert, Nowakowski, and Wolfe (2007), from which we have adopted the name “top-down induction”. This book starts from many examples of games, considers in depth the game Dots and Boxes, and treats the theory of short games where (as we have assumed throughout) every position has only finitely many options and no game position is ever revisited (which in “loopy” games is allowed and could lead to a draw). An authoritative graduate textbook is Siegel (2013), which gives excellent overviews before treating
each topic in depth, including newer research developments. It stresses the concept of equivalence of games that we have treated in Section 1.4.
The classic text on combinatorial game theory is Winning Ways by Berlekamp, Conway, and Guy (2001-2004). Its wit, vivid colour drawings, and the wealth of games it considers make this a very attractive original source. However, the mathematics is hard, and it helps to know first what the topic is about; for example, equivalence of games is rather implicit and written as equality.
All these books consider directly partizan games. We have chosen to focus on the simpler impartial games, apart from our short introduction to partizan games in Section 1.8. For a more detailed study of games as numbers see Albert, Nowakowski, and Wolfe (2007, Section 5.1), where Definition $5.12$ is our Definition 1.18.
The winning strategy for the game Nim based on the binary system was first described by Bouton (1901). The Queen move game is due to Wythoff (1907), described as an extension of Nim. The observation that every impartial game is equivalent to a Nim heap is independently due to Sprague (1935) and Grundy (1939). This is therefore also called the Sprague-Grundy theory of impartial games, and Nim values are also called “Sprague-Grundy values” or just “Grundy values”.
The approach in Section $1.5$ to the mex rule is inspired by Berlekamp, Conway, and Guy (2001-2004), chapter 4, which describes Poker Nim, the Rook and Queen move games, Northcott’s game (Exercise 1.8), and chapter 5 with Kayles and Lasker’s Nim (called Split-Nim in Exercise 1.12). Chomp (Exercises $1.5$ and 1.10) was described by Gale (1974); for a generalization see Gale and Neyman (1982). The digraph game in Exercise $1.9$ is another great example for understanding the mex rule, due to Fraenkel (1996).
经济代写|博弈论代写Game Theory代考|Congestion Games
Congestion means that a shared resource, such as a road, becomes more costly when more people use it. In a congestion game, multiple players decide on which resource to use, with the aim to minimize their cost. This interaction defines a game because the cost depends on what the other players do.
We present congestion networks as a model of traffic where individual users choose routes from an origin to a destination. Each edge of the network is congested by creating a cost to each user that weakly increases with the number of users of that edge. The central result (Theorem 2.2) states that every congestion game has an equilibrium where no user can individually reduce her cost by changing her chosen route.
Like Chapter 1, this is another introductory chapter to an active and diverse area of game theory, where we can quickly show some important and nontrivial results. It also gives an introduction to the game-theoretic concepts of strategies and equilibrium before we develop the general theory.
Equilibrium is the result of selfish routing by the users who individually minimize their costs. This is typically not the socially optimal outcome, which could have a lower average cost. A simple example is the “Pigou network” (see Section 2.2), named after the English economist Arthur Pigou, who introduced the concept of an externality (such as congestion) to economics. Even more surprisingly, the famous Braess paradox, threated in Section 2.3, shows that adding capacity to a road network can worsen equilibrium congestion.
In Section $2.4$ we give the general definition of congestion networks. In Section $2.5$ we prove that every congestion game has an equilibrium. This is proved with a cleverly chosen potential function, which is a single function that simultaneously reflects the change in cost of every user when she changes her strategy. Its minimum over all strategy choices therefore defines an equilibrium.
In Section 2.6, we explain the wider context of the presented model. It is the discrete model of atomic (non-splittable) flow with finitely many individual users who choose their traffic routes. As illustrated by the considered examples, the resulting equilibria are often not unique when the “last” user can optimally choose between more than one edge. The limit of many users is the continuous model of splittable flow where users can be infinitesmally small fractions of a “mass” of users who want to travel from an origin to a destination. In this model the equilibrium is often unique, but its existence proof is more technical and not given here.
We also mention the Price of Anarchy that compares the worst equilibrium cost with the socially optimal cost. For further details we give references in Section 2.7.
经济代写|博弈论代写Game Theory代考|The Pigou Network
Getting around at rush hour takes much longer than at less busy times. Commuters take buses where people have to queue to board. There are more buses that fill the bus lanes, and cars are in the way and clog the streets because only a limited number can pass each green light. Commuters can take the bus, walk, or ride a bike, and cars can choose different routes. Congestion, which slows everything down, depends on how many people use certain forms of transport, and which route they choose. We assume that people try to choose an optimal route, but what is optimal depends on what others do. This is an interactive situation, which we call a game. We describe a mathematical model that makes the rules of this game precise.
Figure $2.1$ shows an example of a congestion network. This particular network has two nodes, an origin $o$ and a destination $d$, and two edges that both connect $o$ to $d$. Suppose there are several users of the network who all want to travel from $o$ to $d$ and can choose either edge. Each edge has a cost $c(x)$ associated with it,
which is a function that describes how costly it is for each user to use that edge when it has a flow or load of $x$ users. The top edge has constant cost $c(x)=2$, and the bottom edge has cost $c(x)=x$. The cost could for example be travel time, or incorporate additional monetary costs. The cost is the same for all users of the edge. The cost for each user of the top edge, no matter how many people use it, is always 2 , whereas the bottom edge has cost 1 for one user, 2 for two users, and so on (and zero cost for no users, but then there is no one to profit from taking that zero-cost route).
Suppose the network in Figure $2.1$ is used by two users. They can either both use the top edge, or choose a different edge each, or both use the bottom edge. If both use the top edge, both pay cost 2, but if one of them switches to the bottom edge, that user will travel more cheaply and only pay cost 1 on that edge. We say that this situation is not in equilibrium because at least one user can improve her cost by changing her action. Note that we only consider the unilateral deviation of a single user in this scenario. If both would simultaneously switch to the bottom edge, then this edge would be congested with $x=2$ and again incur cost 2 , which is no improvement to the situation that both use the top edge.
If the two users use different edges, this is an equilibrium. Namely, the user of the bottom edge currently has cost 1 but would pay cost 2 by switching to the top edge, and clearly she has no incentive to do so. And the user of the top edge, when switching from the top edge, would increase the load on the bottom edge from 1 to 2 with the resulting new cost 2 which is also no improvement for her. This proves the equilibrium property.
博弈论代考
经济代写|博弈论代写Game Theory代考|Further Reading
Albert、Nowakowski 和 Wolfe (2007) 是一本关于组合博弈的本科教科书,我们从中采用了“自上而下的归纳法”的名称。本书从许多博弈示例开始,深入研究点与盒博弈,并处理短博弈理论,其中(正如我们自始至终假设的那样)每个位置只有有限多个选项,并且永远不会重新审视任何游戏位置(在“循环”游戏是允许的,可能会导致平局)。权威的研究生教科书是 Siegel (2013),在处理之前给出了很好的概述
深入每个主题,包括新的研究进展。它强调了我们在 1.4 节中讨论过的博弈等价的概念。
关于组合博弈论的经典著作是 Berlekamp、Conway 和 Guy (2001-2004) 的 Winning Ways。它的机智、生动的彩色图画和它认为的丰富游戏使其成为非常有吸引力的原始来源。然而,数学很难,它有助于首先了解主题是什么;例如,游戏的等价是相当隐含的,写成平等。
所有这些书都直接考虑游击队游戏。除了我们在第 1.8 节中对游击队游戏的简短介绍之外,我们选择关注更简单的公正游戏。有关将游戏作为数字进行更详细的研究,请参阅 Albert、Nowakowski 和 Wolfe(2007 年,第 5.1 节),其中定义5.12是我们的定义 1.18。
Bouton(1901)首先描述了基于二进制系统的 Nim 游戏的获胜策略。皇后移动游戏是由于 Wythoff (1907),被描述为 Nim 的延伸。Sprague (1935) 和 Grundy (1939) 独立地观察到每个不偏不倚的游戏都等同于 Nim 堆。因此这也被称为 Sprague-Grundy 公平博弈理论,Nim 值也被称为“Sprague-Grundy 值”或简称为“Grundy 值”。
节中的方法1.5墨西哥规则的灵感来自 Berlekamp、Conway 和 Guy (2001-2004),第 4 章描述了 Poker Nim、Rook 和 Queen 移动游戏、Northcott 的游戏(练习 1.8),以及第 5 章与 Kayles 和 Lasker 的 Nim(在练习 1.12 中称为 Split-Nim)。咀嚼(练习1.5和 1.10) 由 Gale (1974) 描述;有关概括,请参见 Gale 和 Neyman (1982)。练习中的有向图游戏1.9由于 Fraenkel (1996),这是理解 mex 规则的另一个很好的例子。
经济代写|博弈论代写Game Theory代考|Congestion Games
拥堵意味着共享资源(例如道路)在更多人使用时变得更加昂贵。在拥塞游戏中,多个玩家决定使用哪种资源,目的是最小化他们的成本。这种交互定义了一个游戏,因为成本取决于其他玩家的行为。
我们将拥塞网络呈现为流量模型,其中个人用户选择从起点到目的地的路线。网络的每条边缘都通过为每个用户创造成本而拥塞,该成本随着该边缘的用户数量而微弱增加。中心结果(定理 2.2)表明,每个拥塞博弈都有一个均衡,其中没有用户可以通过改变她选择的路线来单独降低她的成本。
与第 1 章一样,这是博弈论活跃和多样化领域的又一介绍性章节,我们可以在其中快速展示一些重要且重要的结果。在我们发展一般理论之前,它还介绍了策略和均衡的博弈论概念。
平衡是用户各自最小化成本的自私路由的结果。这通常不是社会最优结果,其平均成本可能较低。一个简单的例子是“庇古网络”(见第 2.2 节),以英国经济学家亚瑟庇古命名,他将外部性(如拥堵)的概念引入经济学。更令人惊讶的是,著名的 Braess 悖论(在第 2.3 节中受到威胁)表明,增加道路网络的容量会加剧均衡拥堵。
在部分2.4我们给出了拥塞网络的一般定义。在部分2.5我们证明了每个拥塞博弈都有一个均衡。这可以通过一个巧妙选择的势函数来证明,这是一个单一的函数,它同时反映了每个用户在改变策略时成本的变化。因此,它在所有策略选择中的最小值定义了一个均衡。
在第 2.6 节中,我们解释了所呈现模型的更广泛背景。它是原子(不可拆分)流的离散模型,具有有限多个选择他们的交通路线的个人用户。如所考虑的示例所示,当“最后一个”用户可以在多个边缘之间进行最佳选择时,所得到的平衡通常不是唯一的。许多用户的限制是可拆分流的连续模型,其中用户可以是想要从起点到目的地旅行的“大量”用户的无限小部分。在这个模型中,均衡通常是唯一的,但它的存在性证明更加技术性,这里没有给出。
我们还提到了将最坏均衡成本与社会最优成本进行比较的无政府状态价格。有关详细信息,我们将在第 2.7 节中提供参考。
经济代写|博弈论代写Game Theory代考|The Pigou Network
在高峰时间出行比在不那么繁忙的时间需要更长的时间。通勤者乘坐公共汽车,人们必须排队上车。有更多的公共汽车填满了公共汽车专用道,汽车挡路并堵塞街道,因为只有有限的数量可以通过每个绿灯。通勤者可以乘坐公共汽车、步行或骑自行车,汽车可以选择不同的路线。拥堵会减慢一切速度,这取决于有多少人使用某些交通工具,以及他们选择了哪条路线。我们假设人们试图选择一条最佳路线,但最佳路线取决于其他人的做法。这是一种互动情境,我们称之为游戏。我们描述了一个数学模型,使这个游戏的规则变得精确。
数字2.1显示了拥塞网络的示例。这个特定的网络有两个节点,一个原点○和目的地d, 和两个都连接的边○至d. 假设有几个网络用户都想从○至d并且可以选择任一边缘。每条边都有成本C(X)与之相关的,
这是一个函数,用于描述每个用户在有流量或负载时使用该边缘的成本X用户。上边缘的成本不变C(X)=2,底边有成本C(X)=X. 例如,成本可以是旅行时间,或包含额外的货币成本。边缘的所有用户的成本是相同的。顶部边缘的每个用户的成本,无论有多少人使用,始终为 2 ,而底部边缘的成本为 1 一个用户,2 个用户,依此类推(没有用户的成本为零,但是那么没有人可以从这条零成本路线中获利)。
假设图中的网络2.1由两个用户使用。它们可以都使用上边缘,也可以各自选择不同的边缘,或者都使用下边缘。如果两者都使用顶部边缘,则两者都支付成本 2,但如果其中一个切换到底部边缘,则该用户将更便宜地旅行并且只在该边缘支付成本 1。我们说这种情况是不平衡的,因为至少有一个用户可以通过改变她的行为来提高她的成本。请注意,在这种情况下,我们只考虑单个用户的单边偏差。如果两者同时切换到底部边缘,则该边缘将被拥塞X=2并再次产生成本 2 ,这对两者都使用顶部边缘的情况没有任何改善。
如果两个用户使用不同的边,这是一个均衡。即,下边缘的用户当前的成本为 1,但会通过切换到上边缘来支付成本 2,显然她没有这样做的动机。而上边缘的用户,当从上边缘切换时,会将下边缘的负载从 1 增加到 2,从而产生新的成本 2,这对她来说也没有任何改善。这证明了平衡性质。
统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。
金融工程代写
金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。
非参数统计代写
非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。
广义线性模型代考
广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。
术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。
有限元方法代写
有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。
有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。
tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。
随机分析代写
随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
时间序列分析代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。
回归分析代写
多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。