### 统计代写|主成分分析代写Principal Component Analysis代考|ENVX2001

statistics-lab™ 为您的留学生涯保驾护航 在代写主成分分析Principal Component Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写主成分分析Principal Component Analysis代写方面经验极为丰富，各种代写主成分分析Principal Component Analysis相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 统计代写|主成分分析代写Principal Component Analysis代考|Statistical Models versus Geometric Models

There are essentially two main categories of models and approaches for modeling a data set. Methods of the first category model the data as random samples from a probability distribution and try to learn this distribution from the data. We call such models statistical models. Models of the second category model the overall geometric shape of the data set with deterministic models such as subspaces, smooth manifolds, or topological spaces. ${ }^{6}$ We call such models geometric models.
Statistical Learning
In the statistical paradigm, one typically assumes that each data point $\boldsymbol{x}_{j}$ in the data set $\mathcal{X}$ is drawn independently from a common probability distribution $p(\boldsymbol{x})$. Such a probability distribution gives a generative description of the samples and can be used to generate new samples or predict the outcome of new observations. Within this context, the task of learning a model from the data becomes one of inferring the most likely probability distribution within a family of distributions of interest (for example, the Gaussian distributions). Normally, the family of distributions is parameterized and denoted by $\mathcal{M} \doteq{p(x \mid \theta): \theta \in \Theta}$, where $p(x \mid \theta)$ is a probability density function parameterized by $\theta \in \Theta$, and $\Theta$ is the space of parameters. Consequently, one popular criterion for choosing a statistical model $p\left(x \mid \theta^{*}\right)$ is the maximum likelihood (ML) estimate given by ${ }^{7}$ $$\theta_{M L}^{} \doteq \underset{\theta \in \Theta}{\arg \max } \prod_{j=1}^{N} p\left(x_{j} \mid \theta\right)$$ If a prior distribution (density) $p(\theta)$ of the parameter $\theta$ is also given, then, following the Bayesian rule, the maximum a posteriori (MAP) estimate is given by $$\theta_{M A P}^{} \doteq \underset{\theta \in \Theta}{\arg \max } \prod_{j=1}^{N} p\left(\boldsymbol{x}_{j} \mid \theta\right) p(\theta)$$

## 统计代写|主成分分析代写Principal Component Analysis代考|Modeling Mixed Data with a Mixture Model

As we alluded to earlier, many data sets $\mathcal{X}$ cannot be modeled well by a single primitive model $M$ in a pre-chosen or preferred model class $\mathcal{M}$. Nevertheless, it is often the case that if we group such a data set $\mathcal{X}$ into multiple disjoint subsets,
$$\mathcal{X}=\mathcal{X}{1} \cup \mathcal{X}{2} \cup \cdots \cup \mathcal{X}{n}, \quad \text { with } \mathcal{X}{l} \cap \mathcal{X}{m}=\emptyset, \text { for } l \neq m$$ then each subset $\mathcal{X}{i}$ can be modeled sufficiently well by a model in the chosen model class:
$$M_{i}^{}=\underset{M \in \mathcal{M}}{\arg \min } \operatorname{Error}\left(\mathcal{X}{i}, M\right), \quad i=1,2, \ldots, n,$$ where $\operatorname{Error}\left(\mathcal{X}{i}, M\right)$ represents some measure of the error incurred by using the model $M$ to fit the data set $\mathcal{X}{i}$. Each model $M{i}^{}$ is called a primitive or a component model. Precisely in this sense, we call the data set $\mathcal{X}$ mixed (with respect to the chosen model class $\mathcal{M}$ ) and call the collection of primitive models $\left{M_{i}^{*}\right}_{i=1}^{n}$ a mixture model for $\mathcal{X}$. For instance, suppose we are given a set of sample points as shown in Figure 1.2. These points obviously cannot be fit well by any single line, plane, or smooth surface in $\mathbb{R}^{3}$; however, once they are grouped into three subsets, each subset can be fit well by a line or a plane. Note that in this example, the topology of the data is “hybrid”: two of the subspaces are of dimension one, and the other is of dimension two.

## 统计代写|主成分分析代写Principal Component Analysis代考|Statistical Models versus Geometric Models

$$\theta_{M A P} \doteq \underset{\theta \in \Theta}{\arg \max } \prod_{j=1}^{N} p\left(\boldsymbol{x}_{j} \mid \theta\right) p(\theta)$$

## 统计代写|主成分分析代写Principal Component Analysis代考|Modeling Mixed Data with a Mixture Model

$$\mathcal{X}=\mathcal{X} 1 \cup \mathcal{X} 2 \cup \cdots \cup \mathcal{X} n, \quad \text { with } \mathcal{X} l \cap \mathcal{X} m=\emptyset, \text { for } l \neq m$$

$$M_{i}=\underset{M \in \mathcal{M}}{\arg \min } \operatorname{Error}\left(\mathcal{X}_{i}, M\right), \quad i=1,2, \ldots, n,$$

Uleft{M_{i}^{*}}right}_{i=1}^{n}}混合模型 $\mathcal{X}$. 例如，假设给定一组样本点，如图 $1.2$ 所示。这些点显然不能被任何单 一的线、平面或光滑表面很好地拟合 $\mathbb{R}^{3}$; 但是，一旦将它们分成三个子集，每个子集就可以很好地被一条线或一 个平面拟合。注意，在这个例子中，数据的拓扑是“混合的”：两个子空间是一维的，另一个是二维的。

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。