### 统计代写|主成分分析代写Principal Component Analysis代考|ICE 2022

statistics-lab™ 为您的留学生涯保驾护航 在代写主成分分析Principal Component Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写主成分分析Principal Component Analysis代写方面经验极为丰富，各种代写主成分分析Principal Component Analysis相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 统计代写|主成分分析代写Principal Component Analysis代考|Examples of Mixed Data Modeling

The problem of modeling mixed data is quite representative of many data sets that one often encounters in practical applications. To further motivate the importance of modeling mixed data, we give below a few real-world problems that arise in image processing and computer vision. Most of these problems will be revisited later in this book, and more detailed and principled solutions will be given.
Face Clustering under Varying Illumination
The first example arises in the context of image-based face clustering. Given a collection of unlabeled images $\left{I_{j}\right}_{j=1}^{N}$ of several different faces taken under varying illumination, we would like to cluster the images corresponding to the face of the same person. For a Lambertian object, ${ }^{10}$ it has been shown that the set of all images taken under all lighting conditions forms a cone in the image space, which can be well approximated by a low-dimensional subspace called the “illumination subspace” (Belhumeur and Kriegman 1998; Basri and Jacobs 2003).” For example, if $I_{j}$ is the $j$ th image of a face and $d$ is the dimension of the illumination subspace associated with that face, then there exists a mean face $\mu$ and $d$ eigenfaces $\boldsymbol{u}{1}, \boldsymbol{u}{2}, \ldots, \boldsymbol{u}{d}$ such that $I{j} \approx \boldsymbol{\mu}+\boldsymbol{u}{1} y{1 j}+\boldsymbol{u}{2} y{2 j}+\cdots+\boldsymbol{u}{d j} y{d j}$. Now, since the images of different faces will live in different “illumination subspaces,” we can cluster the collection of images by estimating a basis for each one of those subspaces. As we will see later, this is a special case of the subspace clustering problem addressed in Part II of this book. In the example shown in Figure 1.3, we use a subset of the Yale Face Database B consisting of $n=64 \times 3$ frontal views of three faces (subjects 5,8 and 10 ) under 64 varying lighting conditions. For computational efficiency, we first down-sample each image to a size of $30 \times 40$ pixels. We then project the data onto their first three principal components using PCA, as shown in Figure $1.3$ (a). $.^{12}$ By modeling the projected data with a mixture model of linear subspaces in $\mathbb{R}^{3}$, we obtain three affine subspaces of dimension 2, 1, and 1, respectively. Despite the series of down-sampling and projection, the subspaces lead to a perfect clustering of the face images, as shown in Figure 1.3(b).

## 统计代写|主成分分析代写Principal Component Analysis代考|Mathematical Representations of Mixture Models

The examples presented in the previous subsection argue forcefully for the development of modeling and estimation techniques for mixture models. Obviously, whether the model associated with a given data set is mixed depends on the class of primitive models considered. In this book, the primitives are normally chosen to be simple classes of geometric models or probabilistic distributions.

For instance, one may choose the primitive models to be linear subspaces. Then one can use an arrangement of linear subspaces $\left{S_{i}^{}_{i=1}^{n}} \subset \mathbb{R}^{D}\right.$,
$$Z \doteq S_{1} \cup S_{2} \cup \cdots \cup S_{n},$$
also called a piecewise linear model, to approximate many nonlinear manifolds or piecewise smooth topological spaces. This is the standard model considered in geometric approaches to generalized principal component analysis (GPCA), which will be studied in Part II of this book.

The statistical counterpart to the geometric model in (1.7) is to assume instead that the sample points are drawn independently from a mixture of (near singular) Gaussian distributions $\left{p_{\theta_{i}}(\boldsymbol{x}){i=1}^{n}\right.$, where $\boldsymbol{x} \in \mathbb{R}^{D}$ but each distribution has mass concentrated near a subspace. The overall probability density function can be expressed as a sum: $$q{\theta}(x) \doteq \pi_{1} p_{\theta_{1}}(x)+\pi_{2} p_{\theta_{2}}(x)+\cdots+\pi_{n} p_{\theta_{n}}(x),$$
where $\theta=\left(\theta_{1}, \ldots, \theta_{n}, \pi_{1}, \ldots, \pi_{n}\right)$ are the model parameters and $\pi_{i}>0$ are mixing weights with $\pi_{1}+\pi_{2}+\cdots+\pi_{n}=1$. This is the typical model studied in mixtures of probabilistic principal component analysis (PPCA) (Tipping and Bishop $1999 \mathrm{a}$ ), where each component distribution $p_{\theta_{i}}(\boldsymbol{x})$ is a nearly degenerate Gaussian distribution. A classical way of estimating such a mixture model is the expectation maximization (EM) algorithm, where the membership of each sample is represented as a hidden random variable. Appendix B reviews the general EM method, and Chapter 6 shows how to apply it to the case of multiple subspaces.

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。