统计代写|主成分分析代写Principal Component Analysis代考|OLET5610

如果你也在 怎样代写主成分分析Principal Component Analysis这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

主成分分析(PCA)是计算主成分并使用它们对数据进行基础改变的过程,有时只使用前几个主成分,而忽略其余部分。

statistics-lab™ 为您的留学生涯保驾护航 在代写主成分分析Principal Component Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写主成分分析Principal Component Analysis代写方面经验极为丰富,各种代写主成分分析Principal Component Analysis相关的作业也就用不着说。

我们提供的主成分分析Principal Component Analysis及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|主成分分析代写Principal Component Analysis代考|OLET5610

统计代写|主成分分析代写Principal Component Analysis代考|Performance Measures

In this section, four feature evaluation indices namely, class separability ( $S$ ) [8], overall classification accuracy $(O A)[32]$, kappa coefficient ( $\kappa)$ [32] and entropy $(E)$ [33], have been described which are considered for evaluating the effectiveness of the extracted features. The first three measuring indices need class label information of the samples while the last one does not require the same. The details of the evaluation indices used in this thesis, are given below.
Overall Accuracy $(O A):$
Overall accuracy [32] represents the ratio between the number of samples correctly recognized by the classification algorithm and the total number of test samples. To measure the overall accuracy, initially, confusion matrix is determined. The confusion matrix is a square matrix of size $C \times C$, where $C$ represents the number of classes of the given data set. The element $n_{i j}$ of the matrix denotes the number of samples of the $j$ th $(j=1,2, \ldots, C)$ category which are classified into $i$ th $(i=1,2, \ldots, C)$ category. Let $N$ be the total number of samples; where $N=\sum_{i=1}^{C} \sum_{j=1}^{C} n_{i j}$. The

overall accuracy $(O A)$ is defined as
$$
O A=\frac{\sum_{i=1}^{C} n_{i i}}{N}
$$
Kappa Coefficient $(\kappa)$ :
The kappa coefficient $(\kappa)[32]$ is a measure defined on the difference between the actual agreement in the confusion matrix and the chance agreement, which is indicated by row and column totals of the confusion matrix. The kappa coefficient is widely adopted, as it also takes into consideration the off-diagonal elements of the confusion matrix and compensates for chance agreement. The value of $\kappa$ lies in the range $[-1,+1]$. Closer the value of $\kappa$ to $+1$, better is the classification.

Let, in the confusion matrix, the sum of the elements of $i$ th row be denoted as $n_{i+}$ (where, $n_{i+}=\sum_{j=1}^{C} n_{i j}$ ) and the sum of the elements of column $j$ be $n_{+j}$ (where $n_{+j}=\sum_{i=1}^{C} n_{i j}$. The kappa coefficient is then defined as
$$
\kappa=\frac{N \sum_{i=1}^{C} n_{i i}-\sum_{i=1}^{C} n_{i+} n_{+i}}{N^{2}-\sum_{i=1}^{C} n_{i+} n_{+i}}
$$
where $N$ denotes the total number of samples and $C$ denotes the number of classes of the given data set.

统计代写|主成分分析代写Principal Component Analysis代考|Parameter Details

Experiments are conducted on three hyperspectral data sets, namely, Indian Pine, $\mathrm{KSC}$ and Botswana. Details about the data sets are given in Sect. 6.1. As already mentioned in the previous section, the clustering oriented KPCA based method first perform DBSCAN clustering technique on pixels to choose $N$ representative patterns and then perform KPCA based transformation on the data set to reduce the dimensionality.

DBSCAN clustering algorithm uses two parameters, namely, minimum distance with respect to a point for which neighborhood is calculated (denoted as Eps) and the minimum number of points in an Eps-neighborhood of that point (denoted by MinPts). Ester et al. [29] suggested to use MinPts equal to 4 and used a method which considers the variation of the number of points with respect to their 4th nearest neighbor distance to calculate the value of Eps. Although higher values for MinPts have also been tested, it did not produce better results. The value of Eps is taken to be the location of the first valley of this graph. In the clustering oriented KPCA based strategy, MinPts and Eps are calculated in accordance to Ester et al. [29]. For Indian Pine data set, Eps value is 110 , which is the 4th nearest neighbor distance of the first valley of the graph described at Ester et al. [29] with MinPts equal to 4. There are about 19 clusters of pixels and few isolated pixels which do not belong to any cluster. It is better to discard the isolated pixels and not consider them in formation of representative patterns, because KPCA is susceptible to noise. Generally, the principle for selecting representative patterns from each cluster is discussed in the proposed method section. But the percentage of total patterns which are selected for representative patterns, is needed to determine. Here, $2-12 \%$ of total patterns are selected for representative patterns for calculating kernel matrix of KPCA and the performance of the clustering oriented KPCA based method in terms of overall accuracy for 18 number of extracted features for Indian Pine data is depicted in Table 4. From the table, it is observed that $8-10 \%$ data patterns are sufficient for calculating kernel matrix. Similar observations are also found for the other data sets. So, $10 \%$ data from each cluster are selected for making representative patterns. So in the set of representative patterns, a small cluster has less number of pixels and vice verse. For example, the number of representative patterns for Indian Pine data is about 850 .

统计代写|主成分分析代写Principal Component Analysis代考|Analysis of Results

The cumulative eigenvalues of PCA, KPCA and clustering oriented KPCA based methods are depicted in Table 5 in percentage for Indian Pine data set. The cumulative eigenvalues represent the cumulative variance of the data $[22,34]$. It shows that ninety five percent of cumulative variance of $\mathrm{PCA}$ is retained by the first six components, while KPCA and clustering oriented KPCA based methods need 14 to 18 components. In PCA most of the information content is retained in the first few features, where as, KPCA and clustering oriented KPCA based methods require more number of components.

The obtained OA and $\kappa$ for Indian Pine data after applying fuzzy $k$-NN classifier over the transformed set of features by PCA, segmented PCA (SPCA), kernel PCA (KPCA) and clustering oriented KPCA based methods are given in Table 6. For PCA based method, OA becomes saturated when the number of transformed feature is 10 and after that it is stabilized. For KPCA and clustering oriented KPCA based methods, OA saturated at 18 and 16 number of features, respectively. It is due to the fact that the number of principal components for PCA, KPCA and clustering oriented KPCA methods, for containing most of the variance of data, are 10,18 and 16, respectively (shown in Table 5). It is noticed from Table 6 that Kernel PCA based methods (i.e., KPCA and clustering oriented KPCA) give better results than PCA and segmented PCA based methods. From Table 6, it is also observed that clustering oriented KPCA method achieves better results in terms of OA and $\kappa$ for different number of transformed features. The reason behind this finding is that all the four methods transform the original set of features into a new set of features considering the maximum variance of data. Moreover, KPCA based methods incorporate the non linearity in transformation. The clustering oriented KPCA method gives better results than KPCA, because the representative patterns, for calculating kernel matrix for KPCA, are not selected randomly (like KPCA). The DBSCAN clustering technique is used to select the representative patterns so that it properly represents all the clusters of the data set, as well as, discard noisy pattern.

统计代写|主成分分析代写Principal Component Analysis代考|OLET5610

主成分分析代考

统计代写|主成分分析代写Principal Component Analysis代考|Performance Measures

在本节中,四个特征评价指标,即类可分离性(小号) [8],整体分类准确率(○一个)[32]卡帕系数 (ķ)[32] 和熵(和)[33],已经被描述为评估提取特征的有效性。前三个测量指标需要样本的类别标签信息,而最后一个不需要相同。本论文中使用的评价指标的详细情况如下。
整体准确度(○一个):
总体准确率[32]表示分类算法正确识别的样本数与测试样本总数之间的比率。为了测量整体准确度,首先要确定混淆矩阵。混淆矩阵是一个大小为方阵C×C, 在哪里C表示给定数据集的类数。元素n一世j的矩阵表示样本的数量jth(j=1,2,…,C)分类的类别一世th(一世=1,2,…,C)类别。让ñ为样本总数;在哪里ñ=∑一世=1C∑j=1Cn一世j. 这

整体准确度(○一个)定义为

○一个=∑一世=1Cn一世一世ñ
卡帕系数(ķ):
kappa 系数(ķ)[32]是对混淆矩阵中的实际一致性与机会一致性之间的差异定义的度量,由混淆矩阵的行和列总计表示。kappa 系数被广泛采用,因为它还考虑了混淆矩阵的非对角元素并补偿了机会一致性。的价值ķ位于范围内[−1,+1]. 更接近的价值ķ至+1,更好的是分类。

让,在混淆矩阵中,元素的总和一世th 行记为n一世+(在哪里,n一世+=∑j=1Cn一世j) 和列元素的总和j是n+j(在哪里n+j=∑一世=1Cn一世j. 然后将 kappa 系数定义为

ķ=ñ∑一世=1Cn一世一世−∑一世=1Cn一世+n+一世ñ2−∑一世=1Cn一世+n+一世
在哪里ñ表示样本总数和C表示给定数据集的类数。

统计代写|主成分分析代写Principal Component Analysis代考|Parameter Details

实验在三个高光谱数据集上进行,即印度松、ķ小号C和博茨瓦纳。有关数据集的详细信息在第 3 节中给出。6.1。上一节已经提到,基于 KPCA 的聚类方法首先对像素进行 DBSCAN 聚类技术来选择ñ代表模式,然后对数据集进行基于 KPCA 的变换以降低维数。

DBSCAN 聚类算法使用两个参数,即相对于计算邻域的点的最小距离(表示为 Eps)和该点的 Eps 邻域中的最小点数(表示为 MinPts)。酯等。[29] 建议使用等于 4 的 MinPts,并使用一种考虑点数相对于其第 4 个最近邻距离的变化的方法来计算 Eps 的值。尽管还测试了更高的 MinPts 值,但它并没有产生更好的结果。Eps 的值被视为该图的第一个谷的位置。在基于聚类的 KPCA 策略中,MinPts 和 Eps 是根据 Ester 等人的方法计算的。[29]。对于 Indian Pine 数据集,Eps 值为 110 ,这是 Ester 等人描述的图的第一个谷的第四个最近邻距离。[29] MinPts 等于 4。大约有 19 个像素簇和少数不属于任何簇的孤立像素。最好丢弃孤立的像素,而不是在形成代表性图案时考虑它们,因为 KPCA 容易受到噪声的影响。通常,在建议的方法部分中讨论了从每个集群中选择代表性模式的原则。但需要确定为代表模式选择的总模式的百分比。这里,最好丢弃孤立的像素,而不是在形成代表性图案时考虑它们,因为 KPCA 容易受到噪声的影响。通常,在建议的方法部分中讨论了从每个集群中选择代表性模式的原则。但需要确定为代表模式选择的总模式的百分比。这里,最好丢弃孤立的像素,而不是在形成代表性图案时考虑它们,因为 KPCA 容易受到噪声的影响。通常,在建议的方法部分中讨论了从每个集群中选择代表性模式的原则。但需要确定为代表模式选择的总模式的百分比。这里,2−12%为计算 KPCA 的核矩阵选择了总模式的代表模式,表 4 描述了基于聚类的 KPCA 方法在印度松数据的 18 个提取特征的总体准确度方面的性能。从表中,它观察到8−10%数据模式足以计算内核矩阵。对于其他数据集也发现了类似的观察结果。所以,10%选择来自每个集群的数据来制作具有代表性的模式。因此,在一组代表性图案中,一个小簇的像素数较少,反之亦然。例如,Indian Pine 数据的代表模式数量约为 850 。

统计代写|主成分分析代写Principal Component Analysis代考|Analysis of Results

表 5 中以印度松数据集的百分比描述了 PCA、KPCA 和基于聚类的 KPCA 方法的累积特征值。累积特征值表示数据的累积方差[22,34]. 它表明 95% 的累积方差为磷C一个由前六个组件保留,而基于 KPCA 和面向聚类的 KPCA 方法需要 14 到 18 个组件。在 PCA 中,大部分信息内容保留在前几个特征中,其中,KPCA 和基于 KPCA 的面向聚类的方法需要更多数量的组件。

获得的OA和ķ应用模糊后的印度松数据ķ表 6 中给出了基于 PCA、分段 PCA (SPCA)、核 PCA (KPCA) 和面向聚类的 KPCA 方法对转换特征集的神经网络分类器。对于基于 PCA 的方法,当转换特征的数量为10以后就稳定了。对于 KPCA 和基于 KPCA 的面向聚类的方法,OA 分别在 18 和 16 个特征时达到饱和。这是因为 PCA、KPCA 和面向聚类的 KPCA 方法的主成分数量分别为 10、18 和 16(如表 5 所示),用于包含大部分数据方差。从表 6 中可以看出,基于内核 PCA 的方法(即 KPCA 和面向聚类的 KPCA)比基于 PCA 和分段 PCA 的方法提供更好的结果。从表 6,ķ对于不同数量的转换特征。这一发现背后的原因是,考虑到数据的最大方差,所有四种方法都将原始特征集转换为新特征集。此外,基于 KPCA 的方法在变换中加入了非线性。面向聚类的 KPCA 方法比 KPCA 提供更好的结果,因为用于计算 KPCA 的核矩阵的代表性模式不是随机选择的(如 KPCA)。DBSCAN 聚类技术用于选择具有代表性的模式,使其正确地表示数据集的所有集群,并丢弃噪声模式。

统计代写|主成分分析代写Principal Component Analysis代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注