### 统计代写|回归分析作业代写Regression Analysis代考|STAT 2220

statistics-lab™ 为您的留学生涯保驾护航 在代写回归分析Regression Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写回归分析Regression Analysis代写方面经验极为丰富，各种代写回归分析Regression Analysis相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 统计代写|回归分析作业代写Regression Analysis代考|Models and Generalization

The model $p(y \mid x)$ is the model for these processes; therefore, the data specifically target $p(y \mid x)$.

Depending on the context of the study, these data-producing processes may involve biology, psychology, sociology, economics, physics, etc. The processes that produce the data also involve the measurement processes: If the measurement process is faulty, then the data will provide misleading information about the real, natural processes, because, as the note in the box above states, the data target the processes that produced the data. In addition to natural and measurement processes, the process also involves the type of observations sampled, where they are sampled, and when they are sampled. This ensemble of processes that produces the data is called the data-generating process, abbreviated DGP.
Consider the (Age, Assets) example introduced in the previous section, for example. Suppose you have such data from a Dallas, Texas-based retirement planning company’s clientele, from the year 2003. The processes that produced these data include people’s asset accrual habits, socio-economic nature of the clientele, method of measurement (survey or face-to-face interview), extant macroeconomic conditions in the year 2003, and regional effects specific to Dallas, Texas. All of these processes, as well as any others we might have missed, collectively define the data-generating process (DGP).

The regression model $Y \mid X=x \sim p(y \mid x)$ is a model for the DGP. Like all models, this model allows generalization. Not only does the model explain how the actual data you collected came to be, it also generalizes to an infinity (or near infinity) of other data values that you did not collect. To visualize such “other data,” consider the (Age, Assets) example of the preceding paragraph, and imagine being back in the year 1998 , well prior to the data collection in 2003. Envision the (Age, Assets) data that might be collected in 2003, from your standpoint in 1998 . There are nearly infinitely many potentially observable data values, do you see? The regression model Assets $\mid$ Age $=x \sim p($ Assets $\mid$ Age $=x)$ describes not only how the actual 2003 data arose, but it also describes all the other potentially observable data that could have arisen. Thus, the model generalizes beyond the observed data to the potentially observable data.

## 统计代写|回归分析作业代写Regression Analysis代考|The “Population” Terminology and Reasons Not to Use It

In the previous section, we emphasized that a regression model is a model for the datagenerating process, which is comprised of measurement, scientific, and other processes at the given time and place of data collection. Some sources describe regression (and other statistical) models in terms of “populations” instead of “processes.” The “population” framework states that $p(y \mid x)$ is defined in terms of a finite population of values from which $Y$ is randomly sampled when $X=x$. This terminology is flawed in most statistics applications, but is especially flawed in regression; in this section, we explain why.

Suppose you are interested in estimating the mean amount of charitable contributions $(Y)$ that one might claim on a U.S. tax return, as a function of taxpayer income $(X=x)$. This mean value is denoted by $\mathrm{E}(Y \mid X=x)$, and is mathematically calculated either by $\mathrm{E}(Y \mid X=x)=\int_{\text {all } y} y p(y \mid x) d y$ when $p(y \mid x)$ is a continuous distribution, or by $\mathrm{E}(Y \mid X=x)=\sum_{\text {all } y} y p(y \mid x)$ when $p(y \mid x)$ is a discrete distribution.

To estimate $\mathrm{E}(\mathrm{Y} \mid \mathrm{X}=x)$, you obtain a random sample of all taxpayers by (a) identifying the population of all taxpayers (maybe you work at the IRS!), and (b) using a computer random number generator to select a random sample from this population.

Because each taxpayer is randomly sampled, it is correct to infer that the observed $Y$ in your sample for which $X=\$ 1,000,000.00$are a random sample from the subpopulation of U.S. taxpayers having$X=\$1,000,000.00$. However, in regression analysis, the distribution of this subpopulation of $Y$ values is not what is usually meant by $p(y \mid x)$.

## 统计代写|回归分析作业代写Regression Analysis代考|The “Population” Terminology and Reasons Not to Use It

$\mathrm{E}(Y \mid X=x)=\int_{\text {all } y} y p(y \mid x) d y$ 什么时候 $p(y \mid x)$ 是一个连续分布，或者由
$\mathrm{E}(Y \mid X=x)=\sum_{\text {all } y} y p(y \mid x)$ 什么时候 $p(y \mid x)$ 是离散分布。

## 广义线性模型代考

statistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。