### 统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Comparison of Batches

statistics-lab™ 为您的留学生涯保驾护航 在代写多元统计分析Multivariate Statistical Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写多元统计分析Multivariate Statistical Analysis代写方面经验极为丰富，各种代写多元统计分析Multivariate Statistical Analysis相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• Advanced Probability Theory 高等概率论
• Advanced Mathematical Statistics 高等数理统计学
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Kernel Densities

The major difficulties of histogram estimation may be summarised in four critiques:

• determination of the binwidth $h$, which controls the shape of the histogram,
• choice of the bin origin $x_{0}$, which also influences to some extent the shape,
• loss of information since observations are replaced by the central point of the interval in which they fall,
• the underlying density function is often assumed to be smooth, but the histogram is not smooth.

Rosenblatt (1956), Whittle (1958) and Parzen (1962) developed an approach which avoids the last three difficulties. First, a smooth kernel function rather than a box is used as the basic building block. Second, the smooth function is centred directly over each observation. Let us study this refinement by supposing that $x$ is the centre value of a bin. The histogram can in fact be rewritten as
$$\hat{f}{h}(x)=n^{-1} h^{-1} \sum{i=1}^{n} I\left(\left|x-x_{i}\right| \leq \frac{h}{2}\right)$$
If we define $K(u)=\boldsymbol{I}\left(|u| \leq \frac{1}{2}\right)$, then (1.8) changes to
$$\hat{f}{h}(x)=n^{-1} h^{-1} \sum{i=1}^{n} K\left(\frac{x-x_{i}}{h}\right) .$$
This is the general form of the kernel estimator. Allowing smoother kernel functions like the quartic kernel,
$$K(u)=\frac{15}{16}\left(1-u^{2}\right)^{2} \boldsymbol{I}(|u| \leq 1)$$
and computing $x$ not only at bin centers gives us the kernel density estimator. Kernel estimators can also be derived via weighted averaging of rounded points (WARPing) or by averaging histograms with different origins, see Scott (1985). Table $1.5$ introduces some commonly used kernels.

## 统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Chernoff-Flury Faces

If we are given data in numerical form, we tend to also display it numerically. This was done in the preceding sections: an observation $x_{1}=(1,2)$ was plotted as the point $(1,2)$ in a two-dimensional coordinate system. In multivariate analysis we want to understand data in low dimensions (e.g. on a $2 \mathrm{D}$ computer screen) although the structures are hidden in high dimensions. The numerical display of data structures using coordinates therefore ends at dimensions greater than three.

If we are interested in condensing a structure into $2 \mathrm{D}$ elements, we have to consider alternative graphical techniques. The Chernoff-Flury faces, for example, provide such a condensation of high-dimensional information into a simple “face”. In fact faces are a simple way of graphically displaying high-dimensional data. The size of the face elements like pupils, eyes, upper and lower hair line, etc. are assigned to certain variables. The idea of using faces goes back to Chernoff (1973) and has been further developed by Bernhard Flury. We follow the design described in Flury and Riedwyl (1988) which uses the following characteristics.

1. right eye size
2. right pupil size
3. position of right pupil
4. right eye slant
5. horizontal position of right eye
6. vertical position of right eye
7. curvature of right eyebrow
8. density of right eyebrow
9. horizontal position of right eyebrow
10. vertical position of right eyebrow
11. right upper hair line
12. right lower hair line
13. right face line
14. darkness of right hair
15. right hair slant
16. right nose line
17. right size of mouth
18. right curvature of mouth
19-36. like 1-18, only for the left side.

## 统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Andrews’ Curves

The basic problem of graphical displays of multivariate data is the dimensionality. Scatterplots work well up to three dimensions (if we use interactive displays). More than three dimensions have to be coded into displayable 2D or 3D structures (e.g. faces). The idea of coding and representing multivariate data by curves was suggested by Andrews (1972). Each multivariate observation $X_{i}=\left(X_{i, 1}, \ldots, X_{i, p}\right)$ is transformed into a curve as follows:
the observation represents the coefficients of a so-called Fourier series $(t \in[-\pi, \pi])$.
Suppose that we have three-dimensional observations: $X_{1}=(0,0,1), X_{2}=$ $(1,0,0)$ and $X_{3}=(0,1,0)$. Here $p=3$ and the following representations correspond to the Andrews’ curves:
\begin{aligned} &f_{1}(t)=\cos (t) \ &f_{2}(t)=\frac{1}{\sqrt{2}} \quad \text { and } \ &f_{3}(t)=\sin (t) \end{aligned}
These curves are indeed quite distinct, since the observations $X_{1}, X_{2}$, and $X_{3}$ are the $3 \mathrm{D}$ unit vectors: each observation has mass only in one of the three dimensions. The order of the variables plays an important role.

## 统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Kernel Densities

• binwidth的确定H，它控制直方图的形状，
• bin 原点的选择X0，这也在一定程度上影响了形状，
• 信息丢失，因为观测值被它们所在区间的中心点所取代，
• 通常假设底层密度函数是平滑的，但直方图并不平滑。

Rosenblatt (1956)、Whittle (1958) 和 Parzen (1962) 开发了一种方法来避免最后三个困难。首先，使用平滑核函数而不是盒子作为基本构建块。其次，平滑函数直接以每个观察为中心。让我们通过假设X是 bin 的中心值。直方图实际上可以重写为

F^H(X)=n−1H−1∑一世=1n我(|X−X一世|≤H2)

F^H(X)=n−1H−1∑一世=1nķ(X−X一世H).

ķ(在)=1516(1−在2)2我(|在|≤1)

## 统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Chernoff-Flury Faces

1. 右眼大小
2. 正确的瞳孔大小
3. 右瞳孔位置
4. 右眼倾斜
5. 右眼水平位置
6. 右眼垂直位置
7. 右眉弧度
8. 右眉密度
9. 右眉水平位置
10. 右眉垂直位置
11. 右上发际线
12. 右下发际线
13. 右脸线
14. 右头发的黑暗
15. 右发斜
16. 右鼻线
17. 嘴巴大小合适
18. 嘴的右曲度
19-36。像 1-18，仅适用于左侧。

## 统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Andrews’ Curves

F1(吨)=因⁡(吨) F2(吨)=12 和  F3(吨)=罪⁡(吨)

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。