### 统计代写|广义线性模型代写generalized linear model代考|STAT3022

statistics-lab™ 为您的留学生涯保驾护航 在代写广义线性模型generalized linear model方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写广义线性模型generalized linear model代写方面经验极为丰富，各种代写广义线性模型generalized linear model相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 统计代写|广义线性模型代写generalized linear model代考|Correspondence Analysis

The analysis of the hair-eye color data in the previous section revealed how hair and eye color are dependent. But this does not tell us how they are dependent. To study this, we can use a kind of residual analysis for contingency tables called correspondence analysis.

Compute the Pearson residuals $r_{P}$ and write them in the matrix form $R_{i j}$, where $i=1, \ldots, r$ and $j=1, \ldots, c$, according to the structure of the data. Perform the singular value decomposition:
$$R_{r \times c}=U_{r \times w} D_{w \times w} V_{w \times c}^{T}$$
where $r$ is the number of rows, $c$ is the number of columns and $w=\min (r, c) . U$ and $V$ are called the right and left singular vectors, respectively. $D$ is a diagonal matrix with sorted elements $d_{i}$, called singular values. Another way of writing this is:
$$R_{i j}=\sum_{k=1}^{w} U_{i k} d_{k} V_{j k}$$
As with eigendecompositions, it is not uncommon for the first few singular values to be much larger than the rest. Suppose that the first two dominate so that:
$$R_{i j} \approx U_{i 1} d_{1} V_{j 1}+U_{i 2} d_{2} V_{j 2}$$

We usually absorb the $d$ s into $U$ and $V$ for plotting purposes so that we can assess the relative contribution of the components. Thus:
\begin{aligned} R_{i j} & \approx\left(U_{i 1} \sqrt{d_{1}}\right) \times\left(V_{j 1} \sqrt{d_{1}}\right)+\left(U_{i 2} \sqrt{d_{2}}\right) \times\left(V_{j 2} \sqrt{d_{2}}\right) \ & \equiv U_{i 1} V_{j 1}+U_{i 2} V_{j 2} \end{aligned}
where in the latter expression we have redefined the $U \mathrm{~s}$ and $V \mathrm{~s}$ to include the $\sqrt{d}$.

## 统计代写|广义线性模型代写generalized linear model代考|Matched Pairs

\begin{aligned}
&\text { In the typical two-way contingency tables, we display accumulated information } \
&\text { about two categorical measures on the same object. In matched pairs, we observe } \
&\text { one measure on two matched objects. } \
&\text { In Stuart (1955), data on the vision of a sample of women is presented. The left } \
&\text { and right eye performance is graded into four categories: } \
&\text { data (eyegrade) } \
&\text { (ct c- xtabs }(y \sim \text { right+left, eyegrade)) } \
&\text { right best second third worst } \
&\text { second } 234 \text { left } 1512 \quad 432 \quad 78 \
\end{aligned}

If we check for independence:
summary (et)
Call: xtabs (formula – y right + left, data – eyegrade)
Number of cases in table: 7477
Number of factors: 2
Test for independence of all factors:
Chisq – 8097, df – 9, p-value $=0$
We are not surprised to find strong evidence of dependence. Most people’s eyes are similar. A more interesting hypothesis for such matched pair data is symmetry. Is $p_{i j}=p_{j i}$ ? We can fit such a model by defining a factor where the levels represent the symmetric pairs for the off-diagonal elements. There is only one observation for each level down the diagonal:
(symfac <- factor (apply (eyegrade $[, 2: 3], 1$, function (x) paste (sort $(x)$,
$\rightarrow$ collapse=” ” “))))
[1] best-best best-second best-third best-worst
[5] best-second second-second second-third second-worst
[9] best-third second-third third-third third-worst
10 Levels: best-best best-second best-third … worst-worst
We now fit this model:
mods <- glm(y symfac, eyegrade, familympoisson)
c (deviance (mods), df . residual (mods))
[1] $19.2496 .000$
pchisq (deviance (mods), df . residual (mods), lower=F)
[1] $0.0037629$
Here, we see evidence of a lack of symmetry. It is worth checking the residuals:
round (xtabs (residuals (mods) right+left, eyegrade), 3)
round (xtabs (residuals (mods) righ left
We see that the residuals above the diagonal are mostly positive, while they are mostly negative below the diagonal. So there are generally more poor left, good right eye combinations than the reverse. Furthermore, we can compute the marginals:
margin table $(c t, 1)$
right
$\begin{array}{lrr}\text { best second third } & \text { worst } \ 1976 & 2256 & 2456\end{array}$

## 统计代写|广义线性模型代写generalized linear model代考|Ordinal Variables

Some variables have a natural order. We can use the methods for nominal variables described earlier in this chapter, but more information can be extracted by taking advantage of the structure of the data. Sometimes we might identify a particular ordinal variable as the response. In such cases, the methods of Section $7.4$ can be used. However, sometimes we are interested in modeling the association between ordinal variables. Here the use of scores can be helpful.

Consider a two-way table where both variables are ordinal. We may assign scores $u_{i}$ and $v_{j}$ to the rows and columns such that $u_{1} \leq u_{2} \leq \cdots \leq u_{I}$ and $v_{1} \leq v_{2} \leq \cdots \leq v_{J}$. The assignment of scores requires some judgment. If you have no particular prefer-

ence, even spacing allows for the simplest interpretation. If you have an interval scale, for example, $0-10$ years old, 10-20 years old, $20-40$ years old and so on, midpoints are often used. It is a good idea to check that the inference is robust to the assignment of scores by trying some reasonable alternative choices. If your qualitative conclusions are changed, this is an indication that you cannot make any strong finding.
Now fit the linear-by-linear association model:
$$\log E Y_{i j}=\log \mu_{i j}=\log n p_{i j}=\log n+\alpha_{i}+\beta_{j}+\gamma u_{i} v_{j}$$
So $\gamma=0$ means independence while $\gamma$ represents the amount of association and can be positive or negative. $\gamma$ is rather like an (unscaled) correlation coefficient. Consider underlying (latent) continuous variables which are discretized by the cutpoints $u_{i}$ and $v_{j}$. We can then identify $\gamma$ with the correlation coefficient of the latent variables.
Consider an example drawn from a subset of the 1996 American National Election Study (Rosenstone et al. (1997)). Using just the data on party affiliation and level of education, we can construct a two-way table:
data (nes96)
xtabs ( PID + educ, nes96)
\begin{tabular}{lrrrrrrrr}
\multicolumn{8}{c}{ educ } \
PID & MS & HSdrop HS Coll cCdeg & BAdeg MAdeg \
strDem & 5 & 19 & 59 & 38 & 17 & 40 & 22 \
weakDem & 4 & 10 & 49 & 36 & 17 & 41 & 23 \
indDem & 1 & 4 & 28 & 15 & 13 & 27 & 20 \
indind & 0 & 3 & 12 & 9 & 3 & 6 & 4 \
indRep & 2 & 7 & 23 & 16 & 8 & 22 & 16 \
weakRep & 0 & 5 & 35 & 40 & 15 & 38 & 17 \
strRep & 1 & 4 & 42 & 33 & 17 & 53 & 25
\end{tabular}
Both variables are ordinal in this example. We need to convert this to a dataframe with one count per line to enable model fitting.

## 统计代写|广义线性模型代写generalized linear model代考|Correspondence Analysis

Rr×C=在r×在D在×在在在×C吨

R一世j=∑ķ=1在在一世ķdķ在jķ

R一世j≈在一世1d1在j1+在一世2d2在j2

R一世j≈(在一世1d1)×(在j1d1)+(在一世2d2)×(在j2d2) ≡在一世1在j1+在一世2在j2

## 统计代写|广义线性模型代写generalized linear model代考|Matched Pairs

在典型的双向列联表中，我们显示累积信息   关于同一对象的两个分类度量。在配对中，我们观察到   对两个匹配的对象进行一次测量。   在 Stuart (1955) 中，提供了关于女性样本视力的数据。左边   右眼表现分为四类：   数据（眼级）   (ct c-xtabs (是∼ 右+左，眼级））   对 最好 第二 第三 最差   最好的 152026612466  第二 234 剩下 151243278  第三 1173621772205  最坏的 3682179492

summary (et)
Call: xtabs (formula – y right + left, data – eyegrade)

Chisq – 8097, df – 9、p值=0

(symfac <- factor (apply (eyegrade[,2:3],1, 函数 (x) 粘贴（排序(X),
→collapse=” ” “)))))
[1] 最佳-最佳-最佳-第二-最佳-第三–最差
[5] 最佳-第二-第二-第二-第三-第二-最差
[9] 最佳-第三-第二-第三-第三-第三第三最差
10 个级别：最好最好最好第二最好第三…最差

mods <- glm(y symfac, eyegrade, familympoisson)
c (deviance (mods), df .residual (mods ))
[1]19.2496.000
pchisq (deviance (mods), df .residual (mods), lower=F)
[1]0.0037629

round (xtabs(residuals (mods) right+left, eyegrade), 3)
round (xtabs(residuals (mods) right left

margin table(C吨,1)

最好的第二第三  最坏的  197622562456

## 统计代写|广义线性模型代写generalized linear model代考|Ordinal Variables

data (nes96)
xtabs ( PID + educ, nes96)

\begin{tabular}{lrrrrrrrr} \multicolumn{8}{c}{ educ} \ PID & MS & HSdrop HS Coll cCdeg & BAdeg MAdeg \ strDem & 5 & 19 & 59 & 38 & 17 & 40 & 22 \weakDem & 4 & 10 & 49 & 36 & 17 & 41 & 23 \ indDem & 1 & 4 & 28 & 15 & 13 & 27 & 20 \ indind & 0 & 3 & 12 & 9 & 3 & 6 & 4 \ indRep & 2 & 7 & 23 & 16 & 8 & 22 & 16 \weakRep & 0 & 5 & 35 & 40 & 15 & 38 & 17 \ strRep & 1 & 4 & 42 & 33 & 17 & 53 & 25 \end{tabular}\begin{tabular}{lrrrrrrrr} \multicolumn{8}{c}{ educ} \ PID & MS & HSdrop HS Coll cCdeg & BAdeg MAdeg \ strDem & 5 & 19 & 59 & 38 & 17 & 40 & 22 \weakDem & 4 & 10 & 49 & 36 & 17 & 41 & 23 \ indDem & 1 & 4 & 28 & 15 & 13 & 27 & 20 \ indind & 0 & 3 & 12 & 9 & 3 & 6 & 4 \ indRep & 2 & 7 & 23 & 16 & 8 & 22 & 16 \weakRep & 0 & 5 & 35 & 40 & 15 & 38 & 17 \ strRep & 1 & 4 & 42 & 33 & 17 & 53 & 25 \end{tabular}

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。