统计代写|描述统计学代写Descriptive statistics代考|Developments in Socio-Economic Statistics

如果你也在 怎样代写描述统计学Descriptive statistics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

描述性统计是对给定数据集进行总结的简短描述性系数,它可以是整个人口的代表,也可以是人口的样本。描述性统计被细分为中心趋势的测量和可变性(扩散)的测量。中心趋势的测量包括平均数、中位数和模式,而变异性的测量包括标准差、方差、最小和最大变量、峰度和偏度。

statistics-lab™ 为您的留学生涯保驾护航 在代写描述统计学Descriptive statistics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写描述统计学Descriptive statistics代写方面经验极为丰富,各种代写描述统计学Descriptive statistics相关的作业也就用不着说。

我们提供的描述统计学Descriptive statistics及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|描述统计学代写Descriptive statistics代考|Developments in Socio-Economic Statistics

统计代写|描述统计学代写Descriptive statistics代考|Stating the Problem

Statisticians accept as a self evident principle that there is one general theory of statistics that applies equally to all fields, ${ }^{1}$ biology, economics, engineering, demography, environmental sciences, sociology, etc. (Fig. 1.1).

Yet, important applications in economics and the social sciences in general are not covered by what today is considered ‘the theory of statistics.’

This calls for a review of the situation, of methods that do not apply, and important aspects of socio-economic applications that are not supported by statistical theory. The peculiar nature of the data in socio-economic statistics requires a different basis than is available at present ${ }^{2}$ and makes it unlikely that a general ‘Theory of Statistics’ can satisfy the needs of this scientific field. Historically, the turn toward inference came from the discovery of random sampling, from experimentation in agriculture and other applications in the natural sciences. We proceed as if socioeconomic statistical data are like those in the sciences, ignoring that they differ in important ways. Because of this, the applications of social, business and economic statistics are not adequately supported by today’s statistical theory (Fig. 1.2).

统计代写|描述统计学代写Descriptive statistics代考|The Anglo-American Influence

The influence of the Anglo-Saxon bio-mathematicians came to dominate the development of statistical theory. The ideas of $\mathrm{K}$. and E. Pearson, R. Fisher, F. Yates, Wm. S. Gossett, M.M. Bartlett, J. Neyman, and other biometricians from the British school of thought found a fertile ground in the USA, partly due to the accessibility of their publications through the common language, and partly due to their common interest in the bio-sciences and engineering. The resulting development could be called the Anglo-American theory of statistics having entered business and economic statistics as ‘decision-making under uncertainty’ of value for business corporations and government. The Anglo-American statistical theory moved probability into a prominent position about which more is to be said in Chap. 10. Yet, the bulk of actual statistical work in the social sciences is directed primarily at the realistic perception of socio-economic phenomena such as price level movements,

demographic developments, industrial production, foreign trade or labor problems. The subsequent evaluation and interpretation of the data is the important aim of all statistical efforts. The present theory of Anglo-American statistics, however, is not directed at the interpretation of the economic and social situations described by these data, yet insisting that the available theory is appropriate and sufficient.

Authors of textbooks on business and economic statistics acknowledge their debt to the mathematicians and biologists R. Fisher, K. Pearson and ‘Student’, but do not acknowledge a greater debt to W. Leontief, R. Stone, S. Kuznets, J. Tinbergen, E. Laspeyres and others for their contributions to socio-economic statistics proper. The roots of this obvious mis-orientation go back to Adolphe Quetelet’s physique sociale, his idea of physical laws governing society like the laws in the physical sciences that were recent discoveries of his time. This idea, typical of his ‘Zeitgeist’ had a long-lasting influence. Quetelet popularized the idea that society could be treated as if it were a branch of the natural sciences. This idea was also accepted and developed by mathematical economists like Walras and Marshall, later leading into econometrics. All this consolidated the influence of these positivist ideas, ${ }^{3}$ particularly by econometricians like R. Frisch and T. Haavelmo. ${ }^{4}$

The other, related source of this mis-direction is the mistaken assumption, that socio-economic statistical data are point-like and objective like individual measurements in the natural sciences. The present theory, based on this, ignores the subjective and aggregative nature of our data.

统计代写|描述统计学代写Descriptive statistics代考|Socio-Economic Statistics and Decision Theory

In the late sixties, many universities in the USA began consolidating the courses on Business and Economic Statistics with courses on Decision Theories and Decision Making. The administrative convenience was evident. The real reason, however, was the obvious affinity between these two groups of courses: both were presented as based on a stochastic view of society and probability theory. Statistics was presented as an extension of making decisions under uncertainty. Such consolidation seemed only a question of time. Nevertheless, some serious objections had to be raised against it.

First, the conditions under which probability calculus, particularly the frequentist kind of probability that prevailed in courses of statistics, can predict the results of games of chance differ from those of actual business decisions. Their risk is of a different nature than that evident in games of chance. In the latter the rules of the game are fixed and known to the players in advance (the decision makers). All possible outcomes are known beforehand. Once the game begins, the rules cannot be changed. The outcomes can be predicted only for the long run, that is, when such a game is continued for many rounds. There are indeed few economic decisions of this invariant and repetitive nature ${ }^{17}$ in which the probability rules of games of chance can be applied meaningfully. ${ }^{18}$ Most business or economic decisions are made either as a compromise between the divergent views of the situation by the voting members of an executive committee, or by a corporate executive officer, without the tensions and benefits of a multidimensional perception of the situation. Economic decisions are judged by their success in the marketplace, and are based on a multiplicity of short and long range considerations, the most important of which often cannot even be quantified. Rarely can such decisions be made according to the rules of games of chance. 19 The study of such decisions is of great interest but

really belong in courses of management, finance or marketing, rather than in one of socio-economic statistics.

Second, it is important to understand how statistical input is brought to bear on business decisions. It provides the economic panorama for the decision, together with other non-statistical information. Typical were the weekly sessions of the directorate of the Du Pont de Namour corporation at which the updated, pertinent economic data series were presented and discussed. ${ }^{20}$ No immediate, concrete decisions followed from the knowledge of these data. Its high-level participants kept this statistical panorama, as it were, in the back of their minds, for the appropriate moment when a decision would be made. This is akin to a situation after a college examination when the instructor publishes the distribution of grades, and each student can assess his position among his peers. Those who ought to make changes in their study habits ${ }^{21}$ will not necessarily act ${ }^{22}$ based on such available information. ${ }^{23}$ If, however, they do decide to act, ${ }^{24}$ then they will use the given information as a guide ${ }^{25}$ in that decision-making process, but will not allow themselves to be forced to act in a specific way, like a cogwheel in a mechanical gear box. ${ }^{26}$ Nobody can object to a course in decision-making, but it should not take the place of business, economic and social statistics properly speaking.

统计代写|描述统计学代写Descriptive statistics代考|Developments in Socio-Economic Statistics

描述统计学代写

统计代写|描述统计学代写Descriptive statistics代考|Stating the Problem

统计学家接受一个不言而喻的原则,即有一个普遍的统计理论同样适用于所有领域,1生物学、经济学、工程学、人口学、环境科学、社会学等(图 1.1)。

然而,今天所谓的“统计理论”并未涵盖经济学和社会科学中的重要应用。

这需要对情况、不适用的方法以及统计理论不支持的社会经济应用的重要方面进行审查。社会经济统计数据的特殊性质需要不同于目前可用的基础2并且使一般的“统计理论”不太可能满足该科学领域的需求。从历史上看,向推理的转变来自随机抽样的发现、农业实验和自然科学中的其他应用。我们继续进行,好像社会经济统计数据就像科学中的数据一样,忽略了它们在重要方面的不同。正因为如此,社会、商业和经济统计的应用并没有得到当今统计理论的充分支持(图 1.2)。

统计代写|描述统计学代写Descriptive statistics代考|The Anglo-American Influence

盎格鲁-撒克逊生物数学家的影响开始主导统计理论的发展。的想法ķ. 和 E. Pearson、R. Fisher、F. Yates、Wm。S. Gossett、MM Bartlett、J. Neyman 和其他来自英国学派的生物统计学家在美国找到了肥沃的土壤,部分原因是他们的出版物可以通过通用语言访问,部分原因是他们对生物科学与工程。由此产生的发展可以被称为英美统计理论已经进入商业和经济统计作为商业公司和政府的价值“不确定性下的决策”。英美统计理论将概率推到了一个突出的位置,关于它的更多内容将在第 1 章中讨论。10. 然而,社会科学中的大部分实际统计工作主要是针对诸如价格水平变动等社会经济现象的现实认识,

人口发展、工业生产、外贸或劳工问题。随后对数据的评估和解释是所有统计工作的重要目标。然而,目前的英美统计理论并不针对这些数据所描述的经济和社会状况的解释,而是坚持现有的理论是适当和充分的。

商业和经济统计教科书的作者承认他们欠数学家和生物学家 R. Fisher、K. Pearson 和“学生”,但不承认对 W. Leontief、R. Stone、S. Kuznets、J. Tinbergen、E. Laspeyres 和其他人对社会经济统计的贡献。这种明显的错误取向的根源可以追溯到阿道夫·凯特莱 (Adolphe Quetelet) 的 physique sociale,他认为管理社会的物理定律就像他那个时代最近发现的物理科学定律一样。这个典型的他的“时代精神”的想法产生了持久的影响。凯特莱普及了社会可以被视为自然科学的一个分支的观点。这个想法也被沃尔拉斯和马歇尔等数理经济学家接受和发展,后来导致计量经济学。3尤其是 R. Frisch 和 T. Haavelmo 等计量经济学家。4

这种错误方向的另一个相关来源是错误的假设,即社会经济统计数据是点状和客观的,就像自然科学中的个体测量一样。基于此,目前的理论忽略了我们数据的主观性和聚合性。

统计代写|描述统计学代写Descriptive statistics代考|Socio-Economic Statistics and Decision Theory

六十年代后期,美国的许多大学开始将商业和经济统计课程与决策理论和决策制定课程相结合。行政便利可见一斑。然而,真正的原因是这两组课程之间的明显相似性:两者都是基于社会的随机观点和概率论。统计数据是作为在不确定性下决策的延伸。这种整合似乎只是时间问题。然而,不得不提出一些严重的反对意见。

首先,概率演算,尤其是统计课程中流行的频率论概率,可以预测机会博弈结果的条件与实际商业决策的条件不同。他们的风险与机会游戏中明显的风险性质不同。在后者中,游戏规则是固定的,并且事先为玩家(决策者)所知。所有可能的结果都是事先知道的。一旦比赛开始,规则就不能改变。结果只能在长期内预测,也就是说,当这样的游戏持续多轮时。确实很少有具有这种不变性和重复性的经济决策17其中可以有意义地应用机会游戏的概率规则。18大多数商业或经济决策要么是执行委员会的投票成员或公司执行官对情况的不同观点之间的妥协,要么没有对情况的多维感知带来的紧张和好处。经济决策是根据其在市场上的成功来判断的,并且基于多种短期和长期考虑,其中最重要的因素通常甚至无法量化。很少能根据机会游戏规则做出这样的决定。19 对此类决定的研究具有极大的兴趣,但

真正属于管理、金融或市场营销课程,而不是社会经济统计课程。

其次,重要的是要了解统计输入如何影响业务决策。它提供了决策的经济全景,以及其他非统计信息。典型的是 Du Pont de Namour 公司董事会的每周会议,会上介绍和讨论了最新的相关经济数据系列。20没有根据这些数据的知识立即做出具体的决定。它的高级参与者将这个统计全景图保留在他们的脑海中,以便做出决定的适当时刻。这就好比高考后老师公布成绩分布,每个学生都可以评估自己在同龄人中的位置。那些应该改变学习习惯的人21不一定会行动22基于此类可用信息。23然而,如果他们决定采取行动,24然后他们将使用给定的信息作为指导25在那个决策过程中,但不会让自己被迫以特定的方式行动,就像机械齿轮箱中的齿轮。26没有人可以反对决策课程,但正确地说,它不应该取代商业、经济和社会统计。

统计代写|描述统计学代写Descriptive statistics代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注