### 统计代写|时间序列分析代写Time-Series Analysis代考|Math5845

statistics-lab™ 为您的留学生涯保驾护航 在代写时间序列分析Time-Series Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写时间序列分析Time-Series Analysis代写方面经验极为丰富，各种代写时间序列分析Time-Series Analysis相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 统计代写|时间序列分析代写Time-Series Analysis代考|Properties of Time Series of Spatially Averaged Surface Temperature

With the exception of ENSO-related phenomena, the results of analysis of geophysical time series listed in Table $5.1$ do not contradict the hypothesis of the Markovian behavior of climate (Hasselmann 1976). Out of the 13 time series in Table 5.1, seven have orders not higher than 1 , which can be regarded as a confirmation of the hypothesis. The other six samples have low predictability, which does not differ much from predictability of the remaining seven time series. The predictability of AMO is better than in all other cases, and it may be high enough for practical applications. The AMO time series differs from other time series in the table in the sense that it is obtained by averaging SST over a large area of the North Atlantic; therefore, one can assume that the comparatively high rate of spectral density decrease and the higher predictability criterion $r_{e}(1) \approx 0.62$ for AMO could be the result of that averaging.

The global climate is better characterized with data obtained by averaging over large parts of the globe. The AMO time series is just a specific example of such averaging, but we have nine time series that show the surface temperature over the entire globe, its hemispheres, and oceanic and terrestrial parts. Those time series have been analyzed in Privalsky and Yushkov (2018) and found to have a more complicated structure and a higher predictability than the other time series studied in that work.

The data used in the above publication include the complete time series given by the University of East Anglia; most of the time series begin in 1850. The authors of the data files show that the degree of coverage during the XIX Century was poor. Following the example given in Dobrovolski (2000), we will study the same time series starting from 1920 , when the coverage with observations generally increases to $50 \%$ and higher for the global, hemispheric and oceanic data.

The results given in Table $5.2$ confirm one of the previous conclusions: the annual surface temperature averaged over large parts of the globe is best described with relatively complicated models having AR orders $p=3$ or $p=4$ and a relatively high statistical predictability. The results for the southern hemisphere as a whole and for its land follow a Markov model and have lower statistical predictability; they agree with our results obtained from the data given by the Goddard Institute of Space Studies (GISS). According to the GISS data for the southern hemisphere (#14 in Appendix), the autoregressive order $p=1$ and the criterion $r_{e}(1) \approx 0.55$.

The data sets show that spatial averaging on the global scale and over the northern hemisphere including its oceans and land produces time series whose properties differ quite significantly from what is shown in Table $5.1$ for individual climate indices. The optimal AR orders increase up to four, and the predictability criterion grows up to $0.82$ for the north hemispheric ocean. The reason for the behavior of temperature over the southern hemisphere for the time series which begin in 1920 is not clear, but it may be related to the change is statistical properties of the trivariate system consisting of the time series of global, land, and terrestrial time series. For example, the predictability criterion $r_{e}$ (1) for the entire time series is $0.74$ (Privalsky and Yushkov 2018 ) and $0.44$ for the time series that begins in 1920 . A more detailed description of the change is given in Chap. 14 .

## 统计代写|时间序列分析代写Time-Series Analysis代考|Quasi-Biennial Oscillation

The “rule of no significant sharp peaks” in climate spectra has at least one exception which is supported with decades of direct observations. At least one atmospheric process-the Quasi-Biennial Oscillation, or QBO-does not follow this rule. The QBO phenomenon exists in the equatorial stratosphere at altitudes from about 16 $\mathrm{km}$ to $50 \mathrm{~km}$, and it is characterized with quasi-periodic variations of the westerly and easterly wind speed. The period of oscillations is about 28 months, which corresponds to the frequency of about $0.43$ cpy. It has been discovered in the 1950 ‘s and investigated in a number of publications, in particular, in Holton and Lindzen (1972) who proposed a physical model for QBO. In the review of QBO research by Baldwin et al (2001), QBO is called “a fascinating example of a coherent, oscillating mean flow that is driven with propagating waves with periods unrelated to the resulting oscillation.” Some effects of QBO upon climate are discussed by Anstey and Shepherd $(2014)$.

The statistical properties of QBO such as its spectra and statistical predictability do not seem to have been analyzed within the framework of theory of random processes; this section (along with Chaps. 6 and 10) is supposed to fill this gap in the part related to $\mathrm{QBO}$ as a scalar and bivariate (Chap. 10) phenomenon. It will be analyzed here using the set of monthly observational data provided by the Institute of Meteorology of the Free University of Berlin for the time interval from 1953 through December 2018 (see #15 in Appendix and Naujokat 1986). The set includes monthly wind speed data in the equatorial stratosphere at seven atmospheric pressure levels, from 10 to $70 \mathrm{hPa}$; these levels correspond to altitudes from $31 \mathrm{~km}$ to $18 \mathrm{~km}$.

If the goal of the study were to analyze $\mathrm{QBO}$ as a scalar random process, the data could have been taken at the sampling interval $\Delta t=6$ months or even 1 year. As QBO’s statistical predictability at a monthly sampling rate will also be studied in Chap. 6, the sampling interval $\Delta t=1$ month is taken in this section as well. Examples of $\mathrm{QBO}$ variations are shown in Fig. 5.3.

The basic statistical characteristics of $\mathrm{QBO}$ are shown in Table 5.3. The average wind speed is easterly (negative), and it decreases below the $20 \mathrm{hPa}$ level turning eastward at the lowest level. The variance increases from the $10 \mathrm{hPa}$ level by about $10 \%$ to $15 \mathrm{hPa}$ and $20 \mathrm{hPa}$ and then gradually decreases downward by an order of magnitude. These facts are well known (e.g., Baldwin et al. 2001). The optimal AR models have orders from $p=11$ to $p=29$; such orders are too high for individual time domain analysis.

The typical shape of the spectrum shows an almost periodic random function of time at $f \approx 0.43$ cpy (Fig. 5.4a). The maximum is very narrow and completely dominates the spectrum so that a more detailed picture can only be seen when the scale is logarithmic along both axes (Fig. 5.4b). This seems to be an absolutely unique phenomenon at climatic time scales. At higher frequencies, the spectral density diminishes rather quickly with all other peaks being statistically insignificant. Having this in mind, the spectra will be shown in what follows at frequencies not exceeding 1 cpy.

## 统计代写|时间序列分析代写Time-Series Analysis代考|Other Oscillations

The Madden-Julian Oscillation (MJO) is another unusual phenomenon both because it is not firmly fixed geographically and because it presents an oscillatory system not related to tides or to a seasonal trend. A review of MJO can be found in Zhang (2005).
Strictly speaking, the MJO phenomenon is a vector process and its spectra should be estimated in agreement with the approach discussed in Thomson and Emery (2014, Chap. 5). However, having in mind the methodological goals of the book, the MJO components will be treated here as either two scalar time series (this chapter and Chap. 6) or as a bivariate process (Chap. 8).

The MJO data used here consist of daily MJO indices RMM1 and RMM2 from January 1, 1979 through April 30, $2017(N=14000, \Delta t=1$ day). Thus, MJO is a bivariate random process. The source of the data is the Australian Bureau of Meteorology, site #16 in Appendix. The graph of the time series is shown in Fig. 5.6a. The hypothesis of stationarity can be accepted through visual assessment, but it is also confirmed by using the method described in Chap. 4. The spectral densities of the time series components are very similar and contain a single wide peak at the frequency close to $0.02 \mathrm{cpd}$. The spectral estimates are shown in Fig. $5.6 \mathrm{~b}$ for the part of the frequency axis up to $0.05 \mathrm{cpd}$; at higher frequencies, the spectrum is monotonically decreasing. The confidence limits are not shown because they almost coincide with the spectra due to the high reliability of estimates obtained with these long time series. The contribution of higher frequencies is negligibly small. Thus, the Madden-Julian Oscillation presents a good example of an oscillatory system. The statistical predictability criterion $r_{e}(1)$ given with Eq. (3.7) amounts to about $0.98$, meaning that both components possess high statistical predictability at the unit lead time, that is, at 1 day.

## 统计代写|时间序列分析代写Time-Series Analysis代考|Quasi-Biennial Oscillation

QBO 的统计特性，如光谱和统计可预测性，似乎没有在随机过程理论的框架内进行分析；本节（连同第 6 章和第 10 章）应该填补与问乙○作为标量和双变量（第 10 章）现象。此处将使用柏林自由大学气象研究所提供的 1953 年至 2018 年 12 月期间的月度观测数据集进行分析（见附录中的 #15 和 Naujokat 1986）。该集合包括赤道平流层在七个大气压水平下的每月风速数据，从 10 到70H磷一个; 这些级别对应于从31 ķ米至18 ķ米.

## 统计代写|时间序列分析代写Time-Series Analysis代考|Other Oscillations

Madden-Julian 振荡 (MJO) 是另一个不寻常的现象，既因为它在地理上没有牢固固定，也因为它呈现出与潮汐或季节性趋势无关的振荡系统。可以在 Zhang (2005) 中找到对 MJO 的评论。

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。