如果你也在 怎样代写时间序列分析这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。
时间序列分析是分析在一个时间间隔内收集的一系列数据点的具体方式。在时间序列分析中,分析人员在设定的时间段内以一致的时间间隔记录数据点,而不仅仅是间歇性或随机地记录数据点。
statistics-lab™ 为您的留学生涯保驾护航 在代写时间序列分析方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写时间序列分析代写方面经验极为丰富,各种代写时间序列分析相关的作业也就用不着说。
我们提供的时间序列分析及其相关学科的代写,服务范围广, 其中包括但不限于:
- Statistical Inference 统计推断
- Statistical Computing 统计计算
- Advanced Probability Theory 高等概率论
- Advanced Mathematical Statistics 高等数理统计学
- (Generalized) Linear Models 广义线性模型
- Statistical Machine Learning 统计机器学习
- Longitudinal Data Analysis 纵向数据分析
- Foundations of Data Science 数据科学基础

统计代写|时间序列分析作业代写time series analysis代考|Other Oscillations
The Madden-Julian Oscillation (MJO) is another unusual phenomenon both because it is not firmly fixed geographically and because it presents an oscillatory system not related to tides or to a seasonal trend. A review of MJO can be found in Zhang (2005).
Strictly speaking, the MJO phenomenon is a vector process and its spectra should be estimated in agreement with the approach discussed in Thomson and Emery $(2014$, Chap. 5). However, having in mind the methodological goals of the book, the MJO components will be treated here as either two scalar time series (this chapter and Chap. 6) or as a bivariate process (Chap. 8).
The MJO data used here consist of daily MJO indices RMM1 and RMM2 from January 1, 1979 through April $30,2017(N=14000, \Delta t=1$ day). Thus, MJO is a bivariate random process. The source of the data is the Australian Bureau of Meteorology, site #16 in Appendix. The graph of the time series is shown in Fig. 5.6a. The hypothesis of stationarity can be accepted through visual assessment, but it is also confirmed by using the method described in Chap. 4. The spectral densities of the time series components are very similar and contain a single wide peak at the frequency close to $0.02$ cpd. The spectral estimates are shown in Fig. $5.6 \mathrm{~b}$ for the part of the frequency axis up to $0.05$ cpd; at higher frequencies, the spectrum is monotonically decreasing. The confidence limits are not shown because they almost coincide with the spectra due to the high reliability of estimates obtained with these long time series. The contribution of higher frequencies is negligibly small. Thus, the Madden-Julian Oscillation presents a good example of an oscillatory system. The statistical predictability criterion $r_{e}$ (1) given with Eq. (3.7) amounts to about $0.98$, meaning that both components possess high statistical predictability at the unit lead time, that is, at 1 day.
统计代写|时间序列分析作业代写time series analysis代考|General Remarks
Forecasting geophysical processes is probably the most desired goal in Earth and related solar sciences. Reliable predictions are needed at time scales from hours and days (meteorology, hydrology, etc.) to decades and centuries (climatology and related sciences). With one exception, all geophysical processes in the atmosphereocean-land-cryosphere system are random, which means that none of them can be predicted at any lead time without an error. The exception is tides-a deterministic process which exists in the oceans, atmosphere, and in the solid body of the planet. The knowledge of tides is especially important for the oceans, and tides in the open ocean can be predicted almost precisely. Along the shorelines where tides play an important role, sea level variations can generally be predicted with sufficient accuracy as well, but there may be some cases when random disturbances should also be taken into account (Munk and Cartwright 1966).
The behavior of another astronomically caused process – the seasonal trend-is so irregular that one cannot even say for sure whether the next summer (or any other season) will be warmer or cooler than the current one.
The atmospheric, oceanic, terrestrial, and cryospheric processes and their interactions can be described with fluid dynamics equations; however, the equations are complicated, numerous, and cannot be solved analytically. Getting reliable numerical solutions encounters serious physical and computational problems, which cannot be discussed in this book. However, there is at least one important example of successful numerical solution of prediction problems-the weather forecasting. The forecasts given by meteorologists are reliable and rarely contain serious errors at lead times at least up to about a week. These forecasts are obtained by uploading information about the current (initial) state of processes involved in weather generation into a numerical computational scheme having discrete temporal and spatial resolution and then running the scheme forward in time and space to obtain forecasts. As the knowledge of the initial conditions cannot be ideal, the forecasts contain errors. Besides, the computational grid is discrete so that the processes whose scales are smaller than the distance between the grid nodes and shorter than the unit time step cannot be directly taken into account. The errors in the initial and other conditions grow with the forecast lead time, and eventually, the variance of the forecast errors becomes equal to the variance of the process that is being forecasted. The forecast becomes unusable. It means that the process has a predictability limit; the limit should be defined quantitatively through the ratio of the forecast error variance as a function of lead time to the variance of the process. These issues have been discussed in a number of classical works by Lorenz $(1963,1975,1995)$.
For weather forecasting, the predictability limit at which the error variance approaches the variance of the process amounts to about a week or slightly longer. The numerical models of climate used, first of all, to assess the influence of anthropogenic factors upon future climate require the same equations and initial conditions as in weather forecasting; however, the temporal and spatial resolutions of numerical climate models are much less detailed and the models cannot predict the natural variability of climate. This may be the reason (or one of the reasons) why the results of climate simulations with numerical general circulation models that show the behavior of climate in the twenty-first century are called climate projections rather than climate predictions (IPCC 2013).
Thus, the numerical models cannot ensure predictions beyond the predictability limits defined in accordance with Lorenz’s ideas. Under this situation, it becomes quite reasonable to deal with the problem by trying to predict the state of Earth system’s elements at lead times of weeks, months, or even longer by using the probabilistic approach (also see Lorenz 2007). This is the subject discussed in this chapter: probabilistic (traditionally – statistical) extrapolation of geophysical time series based upon information about their behavior in the past. The term “extrapolation” is equivalent to prediction and forecasting; for example, forecasting a geophysical process by its behavior in the past and, possibly, by the past behavior of other predictors is nothing else but an extrapolation of a random process.
统计代写|时间序列分析作业代写time series analysis代考|Method of Extrapolation
In both scalar and multivariate cases, the extrapolation means a forecast of the time series on the basis of its behavior in the past. The method of extrapolation used in this book to predict the behavior of stationary geophysical time series is based upon the autoregressive modeling (Box et al. 2015). It is discussed in this chapter for the case of scalar time series $x_{t}$ known over a finite time interval from $t=\Delta t$ through $t=N \Delta t$. The sampling interval $\Delta t$ is the unit time step, which can be a minute, hour, month, year, or whatever the data prescribes. Here, $\Delta t=1$. The only
assumption made about the time series $x_{i}$ is that it presents a sample record of a stationary random process.
The first stage of extrapolation procedure is to approximate the scalar time series with an AR model of a properly selected order $p$. The result of approximation is
$$
x_{t}=\varphi_{1} x_{t-1}+\cdots+\varphi_{p} x_{t-p}+a_{t}
$$
where $\varphi_{j}, j=1, \ldots, p$ are the AR coefficients and $a_{t}$ is a zero mean innovation sequence (white noise) with the variance $\sigma_{a}^{2}$.
Equation (6.1) describes the time series as a function of its behavior in the past, that is, exactly what is required for time series extrapolation. The unknown true value of the time series at lead time $\tau$ is
$$
x_{t+\tau}=\varphi_{1} x_{t+\tau-1}+\cdots+\varphi_{p} x_{t+\tau-p}+a_{t+\tau}
$$
so that at the lead time $\tau=1$
$$
x_{t+1}=\varphi_{1} x_{t}+\cdots+\varphi_{p} x_{t-p+1}+a_{t+1}
$$
At time $t$, all terms in the right-hand side of this equation, with the exception of $a_{t+1}$, are known because they belong to the observed initial time series. Therefore, the extrapolated (predicted, forecasted) value of the time series at the unit lead time is
$$
\hat{x}{t}(1)=\varphi{1} x_{t}+\cdots+\varphi_{p} x_{t-p+1} .
$$
As the extrapolation error at the unit lead time is $a_{t+1}$, its variance is $\sigma_{a}^{2}$. For $\tau=2$, one has
$$
\hat{x}{t}(2)=\varphi{1} \hat{x}{t}(1)+\cdots+\varphi{p} x_{t-p+2}
$$
so that the extrapolation error will be the sum of $\sigma_{a}^{2}$ with the error at $\tau=1$ (that is, $\sigma_{a}^{2}$ ) multiplied by the autoregression coefficient $\varphi_{1}$. The general solution for the extrapolation of an AR ( $p$ ) sequence at the lead time $\tau$ is
$$
\hat{x}{t}(\tau)=\varphi{1} \hat{x}{t}(\tau-1)+\cdots+\varphi{p} \hat{x}{t}(\tau-p) $$ where $\hat{x}{t}(\tau-k)=x_{t+\tau-k}$ are the known time series elements if $\tau \leq k$.
Let
$$
\varepsilon_{t}(\tau)=x_{t+\tau}-\hat{x}{t}(\tau) $$ be the error of extrapolation from time $t$ at lead time $\tau$; its variance $\sigma{\varepsilon}^{2}(\tau)$ can be defined in the following manner. In the operator form, Eq. (6.1) is
$$
x_{t}=\left(1-\varphi_{1} B-\cdots-\varphi_{p} B^{p}\right)^{-1} a_{t}
$$
or
$$
x_{t}=\boldsymbol{\Phi}^{-1}(B) a_{t} .
$$

时间序列分析代写
统计代写|时间序列分析作业代写time series analysis代考|Other Oscillations
Madden-Julian 振荡 (MJO) 是另一种不寻常的现象,既因为它在地理上没有牢固固定,也因为它呈现出与潮汐或季节性趋势无关的振荡系统。可以在 Zhang (2005) 中找到对 MJO 的评论。
严格来说,MJO 现象是一个矢量过程,其光谱的估计应与 Thomson 和 Emery 中讨论的方法一致(2014,章。5)。然而,考虑到本书的方法论目标,MJO 组件在这里将被视为两个标量时间序列(本章和第 6 章)或双变量过程(第 8 章)。
这里使用的 MJO 数据包括从 1979 年 1 月 1 日到 4 月的每日 MJO 指数 RMM1 和 RMM230,2017(ñ=14000,Δ吨=1天)。因此,MJO 是一个二元随机过程。数据来源是澳大利亚气象局,附录中的站点 #16。时间序列图如图 5.6a 所示。平稳性假设可以通过视觉评估来接受,但也可以通过使用第 1 章中描述的方法来确认。4. 时间序列分量的谱密度非常相似,并且在接近的频率处包含一个宽峰0.02cpd。频谱估计如图 1 所示。5.6 b对于频率轴的部分高达0.05cpd; 在较高频率下,频谱单调递减。未显示置信限,因为它们几乎与光谱重合,因为这些长时间序列获得的估计具有高可靠性。较高频率的贡献小到可以忽略不计。因此,Madden-Julian 振荡是振荡系统的一个很好的例子。统计可预测性标准r和(1) 用方程式给出。(3.7) 约等于0.98,这意味着这两个组件在单位交货期(即 1 天)具有较高的统计可预测性。
统计代写|时间序列分析作业代写time series analysis代考|General Remarks
预测地球物理过程可能是地球和相关太阳科学中最理想的目标。从几小时和几天(气象学、水文等)到几十年和几个世纪(气候学和相关科学)的时间尺度上都需要可靠的预测。除了一个例外,大气-海洋-陆地-冰冻圈系统中的所有地球物理过程都是随机的,这意味着在任何提前期都无法无误地预测它们。潮汐是一个例外——一种存在于海洋、大气和地球固体中的确定性过程。潮汐知识对海洋尤为重要,几乎可以准确预测开阔海域的潮汐。沿着潮汐发挥重要作用的海岸线,通常也可以以足够的准确度预测海平面变化,
另一个由天文引起的过程——季节性趋势——的行为是如此不规则,以至于人们甚至无法确定下一个夏天(或任何其他季节)是否会比当前的夏天更温暖或更凉爽。
大气、海洋、陆地和冰冻圈过程及其相互作用可以用流体动力学方程来描述;但是,方程复杂、数量众多,无法解析求解。获得可靠的数值解会遇到严重的物理和计算问题,这本书无法讨论。然而,至少有一个成功的预测问题数值解的重要例子——天气预报。气象学家给出的预测是可靠的,并且在至少一周左右的提前期很少出现严重错误。这些预报是通过将有关天气生成过程的当前(初始)状态的信息上传到具有离散时间和空间分辨率的数值计算方案中获得的,然后在时间和空间上向前运行该方案以获得预报。由于初始条件的知识不可能是理想的,因此预测包含错误。此外,计算网格是离散的,因此不能直接考虑尺度小于网格节点之间距离且小于单位时间步长的过程。初始和其他条件下的误差随着预测提前期而增长,最终,预测误差的方差等于被预测过程的方差。预测变得不可用。这意味着该过程具有可预测性限制;限制应该通过作为前置时间函数的预测误差方差与过程方差的比率来定量定义。这些问题已在洛伦兹的许多经典著作中讨论过(1963,1975,1995).
对于天气预报,误差方差接近过程方差的可预测性极限约为一周或稍长。首先,用于评估人为因素对未来气候影响的气候数值模型需要与天气预报相同的方程和初始条件;然而,数值气候模型的时空分辨率要少得多,模型无法预测气候的自然变率。这可能是(或原因之一)为什么用数值大气环流模型显示 21 世纪气候行为的气候模拟结果被称为气候预测而不是气候预测的原因(IPCC 2013)。
因此,数值模型不能确保超出根据 Lorenz 的想法定义的可预测性限制的预测。在这种情况下,通过使用概率方法尝试在几周、几个月甚至更长的时间预测地球系统要素的状态来解决这个问题变得非常合理(另见 Lorenz 2007)。这是本章讨论的主题:基于过去行为信息的地球物理时间序列的概率(传统上 – 统计)外推。“外推”一词相当于预测和预测;例如,通过其过去的行为以及可能通过其他预测器的过去行为来预测地球物理过程,只不过是对随机过程的外推。
统计代写|时间序列分析作业代写time series analysis代考|Method of Extrapolation
在标量和多变量情况下,外推意味着根据过去的行为预测时间序列。本书中用于预测静止地球物理时间序列行为的外推方法基于自回归模型(Box et al. 2015)。本章讨论标量时间序列的情况X吨在有限的时间间隔内已知吨=Δ吨通过吨=ñΔ吨. 采样间隔Δ吨是单位时间步长,可以是一分钟、一小时、一个月、一年或任何数据规定的时间。这里,Δ吨=1. 唯一的
关于时间序列的假设X一世是它呈现了一个平稳随机过程的样本记录。
外推程序的第一阶段是用正确选择阶数的 AR 模型来近似标量时间序列p. 近似的结果是
X吨=披1X吨−1+⋯+披pX吨−p+一种吨
在哪里披j,j=1,…,p是 AR 系数和一种吨是具有方差的零均值创新序列(白噪声)σ一种2.
等式 (6.1) 将时间序列描述为其过去行为的函数,也就是说,正是时间序列外推所需要的。提前期时间序列的未知真实值τ是
X吨+τ=披1X吨+τ−1+⋯+披pX吨+τ−p+一种吨+τ
所以在交货时间τ=1
X吨+1=披1X吨+⋯+披pX吨−p+1+一种吨+1
当时吨, 这个等式右边的所有项,除了一种吨+1, 是已知的,因为它们属于观察到的初始时间序列。因此,时间序列在单位提前期的外推(预测、预测)值为
X^吨(1)=披1X吨+⋯+披pX吨−p+1.
由于单位提前期的外推误差为一种吨+1,其方差为σ一种2. 为了τ=2, 一个有
X^吨(2)=披1X^吨(1)+⋯+披pX吨−p+2
因此外推误差将是σ一种2错误在τ=1(那是,σ一种2) 乘以自回归系数披1. AR外推的一般解决方案(p) 在提前期的序列τ是
X^吨(τ)=披1X^吨(τ−1)+⋯+披pX^吨(τ−p)在哪里X^吨(τ−ķ)=X吨+τ−ķ是已知的时间序列元素,如果τ≤ķ.
让
e吨(τ)=X吨+τ−X^吨(τ)是时间外推的误差吨在交货时间τ; 它的方差σe2(τ)可以通过以下方式定义。在运算符形式中,方程式。(6.1) 是X吨=(1−披1乙−⋯−披p乙p)−1一种吨
或者
X吨=披−1(乙)一种吨.
统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。
金融工程代写
金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。
非参数统计代写
非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。
广义线性模型代考
广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。
术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。
有限元方法代写
有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。
有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。
tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。
随机分析代写
随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
时间序列分析代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。
回归分析代写
多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。