如果你也在 怎样代写机器学习machine learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。
机器学习是一种数据分析的方法,可以自动建立分析模型。它是人工智能的一个分支,其基础是系统可以从数据中学习,识别模式,并在最小的人为干预下做出决定。
statistics-lab™ 为您的留学生涯保驾护航 在代写机器学习machine learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写机器学习machine learning代写方面经验极为丰富,各种代写机器学习machine learning相关的作业也就用不着说。
我们提供的机器学习machine learning及其相关学科的代写,服务范围广, 其中包括但不限于:
- Statistical Inference 统计推断
- Statistical Computing 统计计算
- Advanced Probability Theory 高等概率论
- Advanced Mathematical Statistics 高等数理统计学
- (Generalized) Linear Models 广义线性模型
- Statistical Machine Learning 统计机器学习
- Longitudinal Data Analysis 纵向数据分析
- Foundations of Data Science 数据科学基础

统计代写|机器学习作业代写machine learning代考|General Systems Theory
Von Bertalanffy introduced General System Theory in 1956 . Building on Cybernetic theory, Von Bertalanffy defines a system as “a complex of interacting elements.” He also contemplated the idea of thinking systems across all disciplines to discover broad principles that are valid in connection with all systems. The concept of “system” was introduced as a new scientific paradigm (which characterized classical science) and was related to the contrast between the mechanical and analytical paradigm. A notion of paramount importance concerning the general systems theory is the focus it places on interactions. The center within relationships indicates that a single autonomous element’s behavior is unlike its behavior when other elements engage in interaction with the aforementioned element. The differentiation between closed, open, and isolated systems represents another fundamental principle. Within systems that are open, exchanges of matter, energy, information and people occur with the external environment. Within closed systems, the only exchanges that take place are those which involve energy. Systems that are isolated are characterized by the complete lack of exchanges of elements. Based on these fundamental concepts, diverse approaches began to develop as a result of the emergence of the general systems theory. These include open system theory, the viable system approaches, and the viable system models. The open system theory (OST) is concerned with the examination of the relationships between different organizations and the environments that they are a part of (Mele et al. 2010).
Bertalanffy’s approach to analyzing complex systems emphasizes key concepts such as embeddedness within other larger systems, dynamic processes of selforganization, growth, and adaptation. Bertalanffy adopts a holistic approach to his analysis of living systems in stark contrast to the conventional and widely accepted reductionist view on complex phenomena prevalent during the earlier parts of the twentieth century. The reductionist philosophical stance attempts to interpret complex systems in a gestalt state as the sum of all parts or components, while General Systems Theory looks at complex systems holistically, whereby the whole is bigger than the sum of its parts. Systems that learn and adapt must engage successfully with their environments to maintain growth and their ability to adapt. Within such a dynamic relationship, certain systems exist for the sole purpose of supporting the effective functioning of other systems, thereby preventing their failure. Bertalanffy’s work is widely recognized for its universality and application beyond its original focus on theoretical biology and cybernetics, to also include fields as diverse as sociology, economics, statistical analysis, ecology, meteorology, political science and psychology. Systems theory allows us to apply a common framework for the analysis and holistic understanding of complex phenomena and systems. As such, systems theory enables us to better understand individual components and subsystems in the context of their relationship to each other, as well as to other systems and their environment as a higher scale complex system.
统计代写|机器学习作业代写machine learning代考|The Theory of Autopoiesis
The term autopoiesis is derived from the Greek words auto, meaning “self” and poiesis, meaning “creation.” The theory of autopoiesis was proposed by biologists Humberto Maturana and Francisco Varela in 1972 in their publication Autopoiesis and Cognition: The Realization of the Living, where they introduce their theory to describe the essential processes and characteristics that are fundamental for all living organisms. Autopoietic systems consist of self-creating processes that produce all components and subcomponents necessary to sustain its existence as a living entity.
Networks represent relationships between various components which are selfreferential and generate the complexity that characterizes living organisms. These types of processes serve an identical function in the human body (i.e., a cell) as in the mind (i.e., cognition). Different components are incorporated in networks which are self-creating since they produce other components to sustain themselves as well as the structure in its whole complexity. In contrast, a system that harnesses the energy to generate complexity that is uncharacteristic of the system itself, is called “allopoiesis” – an example in that respect would be a factory assembly line whose elements manufacture external products, not to perpetuate itself. Varela and Maturana assert that the organism’s primary function could be described as part of the nature of the self-referential as well as being encapsulated in the selfcreating networks and processes. Pursuing a high-level understanding of neural networks, Maturana proposes that a similar process applies (Maturana and Varela 1980). Maturana ascertain that cognition represents a system governed by selfreferencing, whereby understanding is shaped by previous understanding. What is grasped by the human mind through what the eyes perceive does not constitute the all-inclusive reality of the “outside”; rather, it is the mere articulation of the brain’s neural networks that brings to light the experience of understanding and interpreting (Geyer 2001).
It is perhaps best understood in contrast to an allopoietic system, such as a factory, which takes in materials and uses them to produce something other than itself. Damiano and Luisi $(2010)$, p.148 argue that artificial or completely abstract systems can also exhibit autopoiesis, however, to be considered “living, or alive” they must have cognitive capabilities.
The authors summarize three critical conditions and dimensions of autopoiesis as:
- REACTION NETWORK: Self-production, self-organization, and selfmaintenance. These properties are exhibited through a “regenerative network of processes which takes place within a boundary of its own making and regenerates itself through cognitive or adaptive interactions with the medium.”
- BOUNDARY: Defined by a semi-permeable boundary which allows for exchange with the system’s external environment. The components of the boundary are being produced by a network of reactions which takes place within the boundary. The network of reactions is generated by conditions produced by the existence of the boundary itself.
- COGNITION: The adaptive interaction of a living system with its environment.
统计代写|机器学习作业代写machine learning代考|Structural Determinism
Structural determinism is the notion that form follows function. The structure of a system will determine its behavior, actions and evolutionary development. Whether we are exploring biological, artificial or abstract systems (e.g., legal,religious), structure (form) follows function. Systems adapt their form through the continuous pursuit of specific functions. Any changes that can occur to the structure of an autopoietic system must never interfere with the process of autopoiesis (self-regulation and self-reproduction), or it simply would not exist. Environmental forces could only “trigger or select” possibilities that the system’s structure makes available at any given time. The structure (the actual components and their relationships) may change dramatically over time or may be realized in many ways so long as the organization maintains its process of self-production. It can be said to be organizationally closed but structurally open (Mingers 1991, p. 280).
Structural coupling is the idea that autopoietic systems can become structurally coupled to other systems and their environments through a process that Maturana calls “evolutionary drift” or “mutual specification.” Since the system produces itself, it gains a significant degree of autonomy-it depends less on other entities for its continual existence. Simultaneously, if it ever fails to produce that which is necessary, then autopoiesis must break down, and the entity will disintegrate. If no functionalism is involved, however, the system either continuously maintains autopoiesis or does not (Mingers 1991, p. 280).
Sociologist Niklas Luhmann borrows the concept of autopoiesis and uses it to describe society as a complex autopoietic system. The social system, according to Luhmann, consists of communications which produce subsequent communications based on existing social structures. For instance, social conventions structure how to respond to questions, orders and statements. Such conventions, however, can never exhaustively determine the subsequent communications so that there is always an element of contingency involved in the system. That is, the system’s complexity entails that it must select some communications over others, i.e., the system must necessarily reduce complexity. The first and foremost way in which the social system reduces complexity is by drawing a boundary or distinction between itself and its outside, between the system and its environment. After that, the system can draw distinctions (i.e., communicate) on the system side of that distinction to increase its internal complexity. In this way, the social system is autopoietic. It generates its own elements as well as its own boundaries. Luhmann defines social systems not as a set of actions and functions but as the sum of all the information exchange taking place between all systems and subsystems (individual functioning systems such as the economy, science, politics, media, etc.). According to Luhmann’s view, all subsystems emerge from social systems, and as functions become increasingly differentiated, they achieve their own operational closure and autopoiesis. John Mingers (1991) examines the three elements of autopoietic systems (structural coupling, structural determinism, and boundary) within a social organizational perspective to determine the extent to which the original criteria and definitions of Maturana and Varela can be observed within a social context.

机器学习代写
统计代写|机器学习作业代写machine learning代考|General Systems Theory
Von Bertalanffy 于 1956 年介绍了一般系统理论。基于控制论理论,Von Bertalanffy 将系统定义为“相互作用元素的复合体”。他还考虑了跨学科思考系统的想法,以发现适用于所有系统的广泛原则。“系统”的概念作为一种新的科学范式(以经典科学为特征)被引入,并与机械范式和分析范式之间的对比有关。关于一般系统理论的一个最重要的概念是它对相互作用的关注。关系中的中心表示单个自治元素的行为不同于其他元素与上述元素进行交互时的行为。封闭式、开放式、孤立系统代表了另一个基本原则。在开放的系统中,物质、能量、信息和人的交换与外部环境发生。在封闭系统中,唯一发生的交换是那些涉及能量的交换。孤立的系统的特点是完全不交换元素。基于这些基本概念,随着一般系统理论的出现,各种方法开始发展。这些包括开放系统理论、可行系统方法和可行系统模型。开放系统理论 (OST) 关注不同组织之间的关系及其所属环境的检查(Mele et al. 2010)。物质、能量、信息和人的交换与外部环境发生。在封闭系统中,唯一发生的交换是那些涉及能量的交换。孤立的系统的特点是完全不交换元素。基于这些基本概念,随着一般系统理论的出现,各种方法开始发展。这些包括开放系统理论、可行系统方法和可行系统模型。开放系统理论 (OST) 关注不同组织之间的关系及其所属环境的检查(Mele et al. 2010)。物质、能量、信息和人的交换与外部环境发生。在封闭系统中,唯一发生的交换是那些涉及能量的交换。孤立的系统的特点是完全不交换元素。基于这些基本概念,随着一般系统理论的出现,各种方法开始发展。这些包括开放系统理论、可行系统方法和可行系统模型。开放系统理论 (OST) 关注不同组织之间的关系及其所属环境的检查(Mele et al. 2010)。孤立的系统的特点是完全不交换元素。基于这些基本概念,随着一般系统理论的出现,各种方法开始发展。这些包括开放系统理论、可行系统方法和可行系统模型。开放系统理论 (OST) 关注不同组织之间的关系及其所属环境的检查(Mele et al. 2010)。孤立的系统的特点是完全不交换元素。基于这些基本概念,随着一般系统理论的出现,各种方法开始发展。这些包括开放系统理论、可行系统方法和可行系统模型。开放系统理论 (OST) 关注不同组织之间的关系及其所属环境的检查(Mele et al. 2010)。
Bertalanffy 分析复杂系统的方法强调关键概念,例如嵌入其他更大系统、自组织、增长和适应的动态过程。Bertalanffy 采用整体方法分析生命系统,这与 20 世纪早期流行的关于复杂现象的传统和广泛接受的还原论观点形成鲜明对比。还原论的哲学立场试图将格式塔状态下的复杂系统解释为所有部分或组成部分的总和,而一般系统理论则从整体上看待复杂系统,即整体大于部分之和。学习和适应的系统必须成功地融入环境,以保持增长和适应能力。在这样的动态关系中,某些系统存在的唯一目的是支持其他系统的有效运行,从而防止它们发生故障。Bertalanffy 的工作因其普遍性和应用性而广受认可,超越了最初对理论生物学和控制论的关注,还包括社会学、经济学、统计分析、生态学、气象学、政治学和心理学等多个领域。系统理论使我们能够应用一个通用框架来分析和全面理解复杂的现象和系统。因此,系统理论使我们能够更好地理解各个组件和子系统在它们相互关系的背景下,以及与其他系统及其环境作为更高规模的复杂系统的关系。从而防止他们的失败。Bertalanffy 的工作因其普遍性和应用性而广受认可,超越了最初对理论生物学和控制论的关注,还包括社会学、经济学、统计分析、生态学、气象学、政治学和心理学等多个领域。系统理论使我们能够应用一个通用框架来分析和全面理解复杂的现象和系统。因此,系统理论使我们能够更好地理解各个组件和子系统在它们相互关系的背景下,以及与其他系统及其环境作为更高规模的复杂系统的关系。从而防止他们的失败。Bertalanffy 的工作因其普遍性和应用性而广受认可,超越了最初对理论生物学和控制论的关注,还包括社会学、经济学、统计分析、生态学、气象学、政治学和心理学等多个领域。系统理论使我们能够应用一个通用框架来分析和全面理解复杂的现象和系统。因此,系统理论使我们能够更好地理解各个组件和子系统在它们相互关系的背景下,以及与其他系统及其环境作为更高规模的复杂系统的关系。还包括社会学、经济学、统计分析、生态学、气象学、政治学和心理学等多种领域。系统理论使我们能够应用一个通用框架来分析和全面理解复杂的现象和系统。因此,系统理论使我们能够更好地理解各个组件和子系统在它们相互关系的背景下,以及与其他系统及其环境作为更高规模的复杂系统的关系。还包括社会学、经济学、统计分析、生态学、气象学、政治学和心理学等多种领域。系统理论使我们能够应用一个通用框架来分析和全面理解复杂的现象和系统。因此,系统理论使我们能够更好地理解各个组件和子系统在它们相互关系的背景下,以及与其他系统及其环境作为更高规模的复杂系统的关系。
统计代写|机器学习作业代写machine learning代考|The Theory of Autopoiesis
自创生一词源自希腊语 auto,意思是“自我”,poiesis,意思是“创造”。自创生理论由生物学家 Humberto Maturana 和 Francisco Varela 于 1972 年在他们的出版物《自创生与认知:生命的实现》中提出,他们在其中介绍了他们的理论来描述对所有生物体至关重要的基本过程和特征。自创生系统由自我创造过程组成,这些过程产生维持其作为生物存在所必需的所有组件和子组件。
网络代表了各种组件之间的关系,这些组件是自我参照的,并产生了表征生物体的复杂性。这些类型的过程在人体(即细胞)中与在头脑中(即认知)具有相同的功能。不同的组件被包含在自我创造的网络中,因为它们产生其他组件来维持自身以及整个复杂性的结构。相比之下,利用能量产生与系统本身不同的复杂性的系统被称为“同种异体”——这方面的一个例子是工厂装配线,其元件制造外部产品,而不是使自身永存。Varela 和 Maturana 断言,有机体的主要功能可以被描述为自我参照的性质的一部分,以及被封装在自我创造的网络和过程中。追求对神经网络的高层次理解,Maturana 建议应用类似的过程(Maturana 和 Varela 1980)。Maturana 确定认知代表了一个由自我参照支配的系统,其中理解是由先前的理解塑造的。人的心灵通过眼睛所感知到的东西,并不构成“外在”的包罗万象;更确切地说,仅仅是大脑神经网络的表达就可以揭示理解和解释的经验(Geyer 2001)。追求对神经网络的高层次理解,Maturana 建议应用类似的过程(Maturana 和 Varela 1980)。Maturana 确定认知代表了一个由自我参照支配的系统,其中理解是由先前的理解塑造的。人的心灵通过眼睛所感知到的东西,并不构成“外在”的包罗万象;更确切地说,仅仅是大脑神经网络的表达就可以揭示理解和解释的经验(Geyer 2001)。追求对神经网络的高层次理解,Maturana 建议应用类似的过程(Maturana 和 Varela 1980)。Maturana 确定认知代表了一个由自我参照支配的系统,其中理解是由先前的理解塑造的。人的心灵通过眼睛所感知到的东西,并不构成“外在”的包罗万象;更确切地说,仅仅是大脑神经网络的表达就可以揭示理解和解释的经验(Geyer 2001)。人的心灵通过眼睛所感知到的东西,并不构成“外在”的包罗万象;更确切地说,仅仅是大脑神经网络的表达就可以揭示理解和解释的经验(Geyer 2001)。人的心灵通过眼睛所感知到的东西,并不构成“外在”的包罗万象;更确切地说,仅仅是大脑神经网络的表达就可以揭示理解和解释的经验(Geyer 2001)。
与同种异生系统(例如工厂)相比,它可能是最好的理解,工厂接收材料并使用它们来生产自身以外的东西。达米亚诺和路易西(2010), p.148 认为人工或完全抽象的系统也可以表现出自创生,但是,要被认为是“有生命的,或有生命的”,它们必须具有认知能力。
作者将自创生的三个关键条件和维度总结为:
- 反应网络:自我生产、自我组织和自我维护。这些特性通过“过程的再生网络表现出来,该网络发生在其自身制造的边界内,并通过与媒介的认知或适应性相互作用来再生自身。”
- 边界:由允许与系统外部环境交换的半渗透边界定义。边界的组成部分是由边界内发生的反应网络产生的。反应网络是由边界本身的存在所产生的条件产生的。
- 认知:生命系统与其环境的适应性相互作用。
统计代写|机器学习作业代写machine learning代考|Structural Determinism
结构决定论是形式服从功能的概念。一个系统的结构将决定它的行为、行动和进化发展。无论我们是在探索生物系统、人工系统还是抽象系统(例如,法律、宗教),结构(形式)都遵循功能。系统通过不断追求特定功能来调整其形式。自创生系统结构可能发生的任何变化都绝不能干扰自创生过程(自我调节和自我繁殖),否则它根本就不存在。环境力量只能“触发或选择”系统结构在任何给定时间提供的可能性。只要组织保持其自我生产的过程,结构(实际的组件及其关系)可能会随着时间发生巨大变化,或者可能以多种方式实现。可以说它在组织上是封闭的,但在结构上是开放的(Mingers 1991, p. 280)。
结构耦合是这样一种想法,即自创生系统可以通过一个被 Maturana 称为“进化漂移”或“相互规范”的过程在结构上与其他系统及其环境耦合。由于系统自己产生,它获得了很大程度的自治——它的持续存在较少依赖其他实体。同时,如果它不能产生必要的东西,那么自创生就必须崩溃,实体就会解体。然而,如果不涉及功能主义,系统要么持续保持自创生,要么不保持自创生(Mingers 1991, p. 280)。
社会学家 Niklas Luhmann 借用了自创生的概念,并用它来将社会描述为一个复杂的自创生系统。根据卢曼的说法,社会系统由基于现有社会结构产生后续交流的交流组成。例如,社会习俗决定了如何回应问题、命令和陈述。然而,这样的约定永远不能详尽地确定随后的通信,因此系统中总是包含一个意外因素。也就是说,系统的复杂性意味着它必须选择某些通信而不是其他通信,即系统必须降低复杂性。社会系统降低复杂性的首要方式是在其自身与其外部之间划定界限或区别,系统与其环境之间。之后,系统可以在该区别的系统侧绘制区别(即,通信)以增加其内部复杂性。这样,社会系统是自创生的。它生成自己的元素以及自己的边界。卢曼将社会系统定义为不是一组行为和功能,而是所有系统和子系统(经济、科学、政治、媒体等个体功能系统)之间发生的所有信息交换的总和。在卢曼看来,所有的子系统都是从社会系统中产生的,随着功能的日益分化,它们实现了自身的运作封闭和自创生。John Mingers (1991) 研究了自创生系统的三个要素(结构耦合、结构决定论、
统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。
金融工程代写
金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。
非参数统计代写
非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。
广义线性模型代考
广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。
术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。
有限元方法代写
有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。
有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。
tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。
随机分析代写
随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
时间序列分析代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。
回归分析代写
多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。