### 统计代写|概率论作业代写Probability and Statistics代考5CCM241A|Axioms of the probability theory

statistics-lab™ 为您的留学生涯保驾护航 在代写概率论Probability and Statistics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写概率论Probability and Statistics方面经验极为丰富，各种代写概率论Probability and Statistics相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 统计代写|概率论作业代写Probability and Statistics代考5CCM241A|General probability space

In Chapter I we considered the discrete space of elementary events and introduced the notion of a discrete probability space (Chapter I, $\S 2$ ). In it, an event is a subset of the discrete space of elementary events $\Omega=\left{\omega_{1}, \omega_{2}, \ldots\right}$ and the probability of an event $A$
$$A \in \mathcal{A}={A: A \subseteq \Omega}$$
is defined as the sum of the probabilities of all elementary events $\omega \in A$ leading to the event $A$, i.e.
$$P(A)=\sum_{\omega \in A} P(\omega) .$$
After that, a classical definition of probability was given and a number of probability properties derived from this definition were given. For example, it was proved that the probability (probability function) $P$ on $\mathcal{A}$ has the following properties:
1) For any $A \in \mathcal{A}, P(A) \geq 0$;
2) $P(\Omega)=1$;
3) If $A_{1}, A_{2}, \ldots, A_{k}$ are pairwise disjoint events $\left(A_{i} A_{j}=\varnothing, i \neq j\right)$, then
$$P\left(\sum_{i=1}^{k} A_{i}\right)=\sum_{i=1}^{k} P\left(A_{i}\right) .$$

## 统计代写|概率论作业代写Probability and Statistics代考5CCM241A|The necessity of expanding the concept of space elementary events

As we already noted in the first chapter, the space of elementary events $\Omega={\omega}$ corresponding to the experiment under consideration is not necessarily a discrete space of elementary events (that is, a finite or countable set). For example, random throwing

of a point into a segment $t_{1}, t_{2}$ (say, an experiment with temperature measurement) has a continuum of outcomes, because the result may be any point of a segment. If in the experiments that have a finite or countable set of outcomes, any set of outcomes (any subset of the space of elementary events) is an event, then in the example under consideration the situation is different. We will have great difficulties if we consider any subset of this interval as an event.

In order to understand the essence of these difficulties, let us consider the question of constructing a probabilistic model of an experiment consisting of an infinite «independent» coin tossing with the probability of a «Tail» falling out at each step equal to $p$.
As the set of all outcomes (the space of elementary events), it is natural to take the set
$$\Omega=\left{\omega: \omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right): \omega_{i}=0,1\right}$$
where $\omega_{i}$ is a result of the $i$-th trial: if in the $i$-th coin tossing «Tail»s occurs, then $\omega_{i}=1$; if «Head» occurs, then $\omega_{i}=0(i=1,2, \ldots, n)$.
Let us now answer the question: what is the cardinality of the set $\Omega$ ?
First of all, let us recall a well-known result: any number $a \in[0,1)$ can be uniquely decomposed into a set (containing an infinite number of zeros) of binary fractions:
$$a=\frac{a_{1}}{2}+\frac{a_{2}}{2^{2}}+\frac{a_{3}}{2^{3}}+\ldots \quad\left(a_{i}=0 \quad \text { or } \quad a_{i}=1 ; i=1,2,3, \ldots\right)$$
Whence, if we put a number $a=\frac{\omega_{1}}{2}+\frac{\omega_{2}}{2^{2}}+\frac{\omega_{3}}{2^{3}}+\ldots \in[0,1)$ in correspondence to the point (outcome) $\omega=\left(\omega_{1}, \omega_{2}, \omega_{3}, \ldots\right) \in \Omega$, then we see that there is a one-to-one correspondence between the set $\Omega$ and the interval $[0,1)$, and therefore the set has the cardinality of the continuum.

Now, to understand how to define the probability in the introduced model of an infinite number of «independents tossing of the «right» (symmetric) coin, we note the following:

Since it is possible to take as $\Omega$ the set $[0,1)$, then the problem of interest can be considered as a problem of the values of probabilities in the model of a random «choice of a point from a set $[0,1) »$.

From considerations of symmetry it is clear that all outcomes, i.e. all points of the interval $[0,1)$ must be «equally likely». But the set $[0,1)$ is uncountable, and if we assume that its probability is 1 , then the probability $P(\omega)$ of each elementary event $\omega \in[0,1)$ must necessarily be zero.

## 统计代写|概率论作业代写Probability and Statistics代考5CCM241A|Probability in a measurable space

In this subsection we introduce the concept of probability of an event and prove a number of important properties of probability.

Definition 3. Let a measurable space $(\Omega, \mathcal{A})$, where $\Omega={\omega}$ is a sample space, $\mathcal{A}$ is algebra of subsets of $\Omega$, be given.

Then defined on $(\Omega, \mathcal{A})$ probability (probabilistic measure, probabilistic function) is called a numerical function $P$, which is defined on $\mathcal{A}$ and assigns to the event $A \in \mathcal{A}$ its probability $P(A)$ with the following properties:
P1. For any event $A \in \mathcal{A}$ the probability $P(A) \geq 0$;
P2. $P(\Omega)=1$;
P3. If $A_{1}, A_{2}, \ldots \in \mathcal{A}$ is a sequence of pairwise disjoint events $\left(A_{i} A_{j}=\varnothing, i \neq j\right)$ and $\sum_{n=1}^{\infty} A_{n} \in \mathcal{A}$, then
$$P\left(\sum_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} P\left(A_{n}\right)$$
If $\mathcal{A}$ is $\sigma$-algebra, then in the definition 3 the requirement $\sum_{n=1}^{\infty} A_{n} \in \mathcal{A}$ is superfluous (by the definition of $\sigma$-algebra it is automatically satisfied).

In the probability theory, axiom P1 is called the axiom (or property) of nonnegativity, axiom $\mathbf{P 2}$ – axiom (or property) of normalization, axiom $\mathbf{P 3}$ – axiom (or property) of countable additivity or sigma $(\sigma) \sigma$-additivity.

The triple $(\Omega, \mathcal{A}, P)$, where $\mathcal{A}$ is algebra, is called extended probabilistic space.
The triple $(\Omega, \mathcal{F}, P)$, where $\mathcal{F}$ is $\sigma$-algebra, is called a (general) probabilistic space.

If $\Omega$ is a discrete sample space, i.e. a finite or countable set then it is obvious that a system (set) of all subsets is a sigma-algebra and the corresponding triple $(\Omega, \mathcal{F}, P)$ is called a discrete probability space (see $\mathrm{Ch} . \mathrm{I}, \S 1)$. In particular case, when $\Omega$ is a finite set $(|\Omega|<\infty)$, then the triple $(\Omega, \mathcal{F}, P)$ is called a finite probability space.
The construction of a probability space $(\Omega, \mathcal{F}, P)$ is the main stage in the process of constructing a mathematical model of the experiment.

## 统计代写|概率论作业代写Probability and Statistics代考5CCM241A|General probability space

1）对于任何一种∈一种,磷(一种)≥0;
2) 磷(Ω)=1;
3) 如果一种1,一种2,…,一种ķ是成对的不相交事件(一种一世一种j=∅,一世≠j)， 然后

## 统计代写|概率论作业代写Probability and Statistics代考5CCM241A|The necessity of expanding the concept of space elementary events

\Omega=\left{\omega: \omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right): \omega_{i}=0,1\right }\Omega=\left{\omega: \omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right): \omega_{i}=0,1\right }

## 统计代写|概率论作业代写Probability and Statistics代考5CCM241A|Probability in a measurable space

P1。对于任何事件一种∈一种概率磷(一种)≥0;
P2。磷(Ω)=1;
P3。如果一种1,一种2,…∈一种是成对不相交事件的序列(一种一世一种j=∅,一世≠j)和∑n=1∞一种n∈一种， 然后

## 广义线性模型代考

statistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。