统计代写|生物统计学作业代写Biostatistics代考|Mantel–Haenszel Method

如果你也在 怎样代写生物统计学Biostatistics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

生物统计学是将统计技术应用于健康相关领域的科学研究,包括医学、生物学和公共卫生,并开发新的工具来研究这些领域。

statistics-lab™ 为您的留学生涯保驾护航 在代写生物统计学Biostatistics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写生物统计学Biostatistics方面经验极为丰富,各种代写生物统计学Biostatistics相关的作业也就用不着说。

我们提供的生物统计学Biostatistics及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|生物统计学作业代写Biostatistics代考|Mantel–Haenszel Method

统计代写|生物统计学作业代写Biostatistics代考|Mantel–Haenszel Method

In most investigations we are concerned with one primary outcome, such as a disease, and are focusing on one primary (risk) factor, such as an exposure with a possible harmful effect. There are situations, however, where an investigator may want to adjust for a confounder that could influence the outcome of a statistical analysis. A confounder, or confounding variable, is a variable that may be associated with either the disease or exposure or both. For example, in Example 1.2, a case-control study was undertaken to investigate the relationship between lung cancer and employment in shipyards during World War II among male residents of coastal Georgia. In this case, smoking is a possible counfounder; it has been found to be associated with lung cancer and it may be associated with employment because construction workers are likely to be smokers. Specifically, we want to know:

(a) Among smokers, whether or not shipbuilding and lung cancer are related
(b) Among nonsmokers, whether or not shipbuilding and lung cancer are related

In fact, the original data were tabulated separately for three smoking levels (nonsmoking, moderate smoking, and heavy smoking); in Example 1.2, the last two tables were combined and presented together for simplicity. Assuming that the confounder, smoking, is not an effect modifier (i.e., smoking does not alter the relationship between lung cancer and shipbuilding), however, we do not want to reach separate conclusions, one at each level of smoking. In those cases, we want to pool data for a combined decision. When both the disease and the exposure are binary, a popular method used to achieve this task is the Mantel-Haenszel method. This method provides one single estimate for the common odds ratio and can be summarized as follows:

  1. We form $2 \times 2$ tables, one at each level of the confounder.
  2. At a level of the confounder, we have the data listed in Table 1.17.
    Since we assume that the confounder is not an effect modifier, the odds ratio is constant across its levels. The odds ratio at each level is estimated by $a d / b c$; the Mantel-Haenszel procedure pools data across levels of the confounder to obtain a combined estimate (some kind of weighted average of level-specific odds ratios):
    $$
    \mathrm{OR}_{\mathrm{MH}}=\frac{\sum a d / n}{\sum b c / n}
    $$

统计代写|生物统计学作业代写Biostatistics代考|Standardized Mortality Ratio

In a cohort study, the follow-up death rates are calculated and used to describe the mortality experience of the cohort under investigation. However, the observed mortality of the cohort is often compared with that expected from the death rates of the national population (used as standard or baseline). The basis of this method is the comparison of the observed number of deaths, $d$, from the cohort with the mortality that would have been expected if the group had experienced death rates similar to those of the national population of which the cohort is a part. Let $e$ denote the expected number of deaths; then the comparison is based on the following ratio, called the standardized mortality ratio:
$$
\mathrm{SMR}=\frac{d}{e}
$$
The expected number of deaths is calculated using published national life tables, and the calculation can be approximated as follows:
$$
e \simeq \lambda T
$$
where $T$ is the total follow-up time (person-years) from the cohort and $\lambda$ the annual death rate (per person) from the referenced population. Of course, the annual death rate of the referenced population changes with age. Therefore, what we actually do in research is more complicated, although based on the same idea. First, we subdivide the cohort into many age groups, then calculate the product $\lambda T$ for each age group using the correct age-specific rate for that group, and add up the results.

Example 1.20 Some 7000 British workers exposed to vinyl chloride monomer were followed for several years to determine whether their mortality experience differed from those of the general population. The data in Table $1.22$ are for deaths from cancers and are tabulated separately for four groups based on years since entering the industry. This data display shows some interesting features:

  1. For the group with $1-4$ years since entering the industry, we have a death rate that is substantially less than that of the general population

$(\mathrm{SMR}=0.445$ or $44.5 \%)$. This phenomenon, known as the healthy worker effect, is probably a consequence of a selection factor whereby workers are necessarily in better health (than people in the general population) at the time of their entry into the workforce.

  1. We see an attenuation of the healthy worker effect (i.e., a decreasing trend) with the passage of time, so that the cancer death rates show a slight excess after 15 years. (Vinyl chloride exposures are known to induce a rare form of liver cancer and to increase rates of brain cancer.)
    Taking the ratio of two standardized mortality ratios is another way of expressing relative risk. For example, the relative risk of the $15+$ years group is $1.58$ times the risk of the risk of the $5-9$ years group, since the ratio of the two corresponding mortality ratios is
    $$
    \frac{111.8}{70.6}=1.58
    $$
    Similarly, the risk of the $15+$ years group is $2.51$ times the risk of the $1-4$ years group because the ratio of the two corresponding mortality ratios is
    $$
    \frac{111.8}{44.5}=2.51
    $$

统计代写|生物统计学作业代写Biostatistics代考|NOTES ON COMPUTATIONS

Much of this book is concerned with arithmetic procedures for data analysis, some with rather complicated formulas. In many biomedical investigations, particularly those involving large quantities of data, the analysis (e.g., regression analysis of Chapter 8) gives rise to difficulties in computational implementation. In these investigations it will be necessary to use statistical software specially designed to do these jobs. Most of the calculations described in this book can be carried out readily using statistical packages, and any student or practitioner of data analysis will find the use of such packages essential.

Methods of survival analysis (first half of Chapter 11), for example, and nonparametric methods (Sections $2.4$ and 7.4), and of multiple regression analysis (Section 8.2) may best be handled by a specialized package such as SAS; in these sections are included in our examples where they were used. However, students and investigators contemplating use of one of these commercial programs should read the specifications for each program before choosing the options necessary or suitable for any particular procedure. But these sections are exceptions, many calculations described in this book can be carried out readily using Microsoft’s Excel, popular software available in every personal computer. Notes on the use of Excel are included in separate sections at the end of each chapter.

A worksheet or spreadsheet is a (blank) sheet where you do your work. An Excel file holds a stack of worksheets in a workbook. You can name a sheet, put data on it and save; later, open and use it. You can move or size your windows by dragging the borders. You can also scroll up and down, or left and right, through an Excel worksheet using the scroll bars on the right side and at the bottom.

An Excel worksheet consists of grid lines forming columns and rows; columns are lettered and rows are numbered. The intersection of each column and row is a box called a cell. Every cell has an address, also called a cell reference; to refer to a cell, enter the column letter followed by the row number. For example, the intersection of column $C$ and row 3 is cell C3. Cells hold numbers, text, or formulas. To refer to a range of cells, enter the cell in the upper left corner of the range followed by a colon (:) and then the lower right corner of the range. For example, $\mathrm{A} 1: \mathrm{B} 20$ refers to the first 20 rows in both columns $\mathrm{A}$ and $B$.

统计代写|生物统计学作业代写Biostatistics代考|Mantel–Haenszel Method

生物统计代写

统计代写|生物统计学作业代写Biostatistics代考|Mantel–Haenszel Method

在大多数调查中,我们关注一个主要结果,例如疾病,并关注一个主要(风险)因素,例如可能产生有害影响的暴露。然而,在某些情况下,调查人员可能希望针对可能影响统计分析结果的混杂因素进行调整。混杂因素或混杂变量是可能与疾病或暴露或两者相关的变量。例如,在示例 1.2 中,进行了一项病例对照研究,以调查二战期间佐治亚州沿海男性居民肺癌与造船厂就业之间的关系。在这种情况下,吸烟是一个可能的共同因素。它被发现与肺癌有关,并且可能与就业有关,因为建筑工人可能是吸烟者。

(a) 在吸烟者中,造船业与肺癌是否相关
(b) 在不吸烟者中,造船业与肺癌是否相关

事实上,原始数据分别列出了三个吸烟水平(不吸烟、中度吸烟和重度吸烟);在示例 1.2 中,为简单起见,将最后两个表合并并一起呈现。然而,假设混杂因素吸烟不是影响因素(即吸烟不会改变肺癌与造船之间的关系),我们不想得出单独的结论,每个吸烟水平都有一个结论。在这些情况下,我们希望汇集数据以做出综合决策。当疾病和暴露都是二元的时,用于完成此任务的流行方法是 Mantel-Haenszel 方法。该方法为共同优势比提供了一个单一的估计值,可以总结如下:

  1. 我们形成2×2表,在混杂因素的每个级别都有一个。
  2. 在混杂因素的层面,我们有表 1.17 中列出的数据。
    由于我们假设混杂因素不是效应修饰符,因此优势比在其水平上是恒定的。每个级别的优势比估计为一种d/bC; Mantel-Haenszel 程序汇集了混杂因素水平的数据以获得组合估计(某种特定水平优势比的加权平均值):
    这R米H=∑一种d/n∑bC/n

统计代写|生物统计学作业代写Biostatistics代考|Standardized Mortality Ratio

在一项队列研究中,计算随访死亡率并用于描述被调查队列的死亡率。然而,观察到的队列死亡率通常与预期的全国人口死亡率(用作标准或基线)进行比较。这种方法的基础是观察到的死亡人数的比较,d,如果该组经历的死亡率与该队列所属的全国人口的死亡率相似,则该队列的死亡率是预期的。让和表示预期的死亡人数;然后比较基于以下比率,称为标准化死亡率:
小号米R=d和
预期死亡人数是使用公布的国家生命表计算得出的,该计算可以近似如下:
和≃λ吨
在哪里吨是队列的总随访时间(人年),并且λ参考人口的年死亡率(每人)。当然,参考人群的年死亡率随年龄而变化。因此,我们实际上在研究中所做的事情更加复杂,尽管基于相同的想法。首先,我们将队列细分为多个年龄组,然后计算乘积λ吨为每个年龄组使用该组的正确年龄特定率,并将结果相加。

示例 1.20 对大约 7000 名接触氯乙烯单体的英国工人进行了数年跟踪,以确定他们的死亡经历是否与普通人群不同。表中数据1.22是针对癌症死亡的,并根据进入该行业以来的年限分别列出了四组。此数据显示显示了一些有趣的功能:

  1. 对于组1−4进入这个行业多年以来,我们的死亡率远低于普通人群

(小号米R=0.445或者44.5%). 这种被称为健康工人效应的现象可能是一个选择因素的结果,即工人在进入劳动力市场时(比一般人群中的人)的健康状况必然更好。

  1. 随着时间的推移,我们看到了健康工人效应的衰减(即下降趋势),因此癌症死亡率在 15 年后略有增加。(已知氯乙烯暴露会诱发一种罕见的肝癌并增加脑癌的发病率。)
    取两个标准化死亡率的比率是表示相对风险的另一种方式。例如,相对风险15+年组是1.58乘以风险的风险5−9年组,因为两个相应的死亡率之比为
    111.870.6=1.58
    同样,风险15+年组是2.51倍的风险1−4年组,因为两个相应的死亡率之比为
    111.844.5=2.51

统计代写|生物统计学作业代写Biostatistics代考|NOTES ON COMPUTATIONS

本书的大部分内容都涉及数据分析的算术程序,其中一些具有相当复杂的公式。在许多生物医学研究中,尤其是那些涉及大量数据的研究中,分析(例如,第 8 章的回归分析)会导致计算实现的困难。在这些调查中,有必要使用专门为完成这些工作而设计的统计软件。本书中描述的大多数计算都可以使用统计软件包轻松完成,任何数据分析的学生或从业者都会发现使用这些软件包是必不可少的。

例如,生存分析方法(第 11 章前半部分)和非参数方法(第2.4和 7.4),以及多元回归分析(第 8.2 节)最好由 SAS 等专用软件包处理;这些部分包含在我们使用它们的示例中。但是,考虑使用这些商业程序之一的学生和研究人员应在选择必要或适合任何特定程序的选项之前阅读每个程序的规范。但这些部分是例外,本书中描述的许多计算都可以使用 Microsoft 的 Excel 轻松进行,该软件在每台个人计算机上都可用。Excel 的使用说明包含在每章末尾的单独部分中。

工作表或电子表格是您进行工作的(空白)工作表。Excel 文件在工作簿中包含一堆工作表。您可以命名工作表,在其上放置数据并保存;稍后,打开并使用它。您可以通过拖动边框来移动或调整窗口大小。您还可以使用右侧和底部的滚动条在 Excel 工作表中上下或左右滚动。

Excel 工作表由形成列和行的网格线组成;列有字母,行有编号。每列和每行的交集是一个称为单元格的框。每个单元格都有一个地址,也称为单元格引用;要引用单元格,请输入列字母,后跟行号。例如,列的交集C第 3 行是单元格 C3。单元格包含数字、文本或公式。要引用单元格区域,请在区域左上角输入单元格,后跟冒号 (:),然后在区域右下角输入。例如,一种1:乙20指两列中的前 20 行一种和乙.

统计代写|生物统计学作业代写Biostatistics代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。统计代写|python代写代考

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注