统计代写|统计推断作业代写statistical inference代考|A Forerunner

如果你也在 怎样代写统计推断statistical inference这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

统计推断是利用数据分析来推断概率基础分布的属性的过程。推断性统计分析推断出人口的属性,例如通过测试假设和得出估计值。

statistics-lab™ 为您的留学生涯保驾护航 在代写统计推断statistical inference方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写统计推断statistical inference代写方面经验极为丰富,各种代写统计推断statistical inference相关的作业也就用不着说。

我们提供的统计推断statistical inference及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|统计推断作业代写statistical inference代考|A Forerunner

统计代写|统计推断作业代写statistical inference代考|PROBABILISTIC INFERENCE

An early use of inferred probabilistic reasoning is described by Rabinovitch $(1970)$.

In the Book of Numbers, Chapter 18 , verse 5 , there is a biblical injunction which enjoins the father to redeem his wife’s first-born male child by payment of five pieces of silver to a priest (Laws of First Fruits). In the 12 th Century the theologian, physician and philosopher, Maimonides addressed himself to the following problem with a solution. Suppose one or more women have given birth to a number of children and the order of birth is unknown, nor is it known how many children each mother bore, nor which child belongs to which mother. What is the probability that a particular woman bore boys and girls in a specified sequence? (All permutations are assumed equally likely and the chances of male or female births is equal.)

Maimonides ruled as follows: Two wives of different husbands, one primiparous $(P)$ (a woman who has given birth to her first child) and one not $(\bar{P})$. Let $H$ be the event that the husband of $P$ pays the priest. If they gave birth to two males (and they were mixed up), $P(H)=1-$ if they bore a male $(M)$ and a female $(F)-P(H)=0$ (since the probability is only $1 / 2$ that the primipara gave birth to the boy). Now if they bore 2 males and a female, $P(H)=1$.
$$
\begin{array}{cccccc}
\frac{\text { Case 1 }}{\mathrm{M}, \mathrm{M}} & \frac{(P)}{\mathrm{M}} & \frac{(\bar{P})}{\mathrm{M}} & \frac{\text { Case } 2}{\mathrm{M}, \mathrm{F}} & \frac{(P)}{\mathrm{M}} & \frac{(\bar{P})}{\mathrm{F}} \
& & & \mathrm{F} & \mathrm{M} \
P(H)=1 & & P(H)=\frac{1}{2}
\end{array}
$$

$P A Y M E N T$
$\begin{array}{ccccc}\text { Case 3 } & \frac{(P)}{(\bar{P})} & Y e s & N o & \ \mathrm{M}, \mathrm{M}, \mathrm{F} & \mathrm{M}, \mathrm{M} & \mathrm{F} & \sqrt{ } & \ \mathrm{F}, \mathrm{M} & \mathrm{M} & & \sqrt{ } \ \mathrm{M}, \mathrm{F} & \mathrm{M} & \sqrt{ } & \ \mathrm{F} & \mathrm{M}, \mathrm{M} & & \sqrt{ } \ \mathrm{M} & \mathrm{F}, \mathrm{M} & \sqrt{\mathrm{M}} & \ \mathrm{M} & \mathrm{M}, \mathrm{F} & \sqrt{ } & & P(H)=\frac{2}{3}\end{array}$
Maimonides ruled that the husband of $P$ pays in Case 3 . This indicates that a probability of $2 / 3$ is sufficient for the priest to receive his 5 pieces of silver but $1 / 2$ is not. This leaves a gap in which the minimum probability is determined for payment.

What has been illustrated here is that the conception of equally likely events, independence of events, and the use of probability in making decisions were not unknown during the 12 th century, although it took many additional centuries to understand the use of sampling in determining probabilities.

统计代写|统计推断作业代写statistical inference代考|TESTING USING RELATIVE FREQUENCY

One of the earliest uses of relative frequency to test a Hypothesis was made by Arbuthnot $(1710)$, who questioned whether the births were equally likely to be male or female. He had available the births from London for 82 years. In every year male births exceeded females. Then he tested the hypothesis that there is an even chance whether a birth is male or female or the probability $p=\frac{1}{2}$. Given this hypothesis he calculated the chance of getting all 82 years of male exceedances $\left(\frac{1}{2}\right)^{82}$. Being that this is basically infinitesimal, the hypothesis was rejected. It is not clear how he would have argued if some other result had occurred since any particular result is small-the largest for equal numbers of male and female exceedances is less than $\frac{1}{10}$.

统计代写|统计推断作业代写statistical inference代考|PRINCIPLES GUIDING FREQUENTISM

Classical statistical inference is based on relative frequency considerations. A particular formal expression is given by Cox and Hinkley (1974) as follows:

Repeated Sampling Principle. Statistical procedures are to be assessed by their behavior in hypothetical repetition under the same conditions.
Two facets:

  1. Measures of uncertainty are to be interpreted as hypothetical frequencies in long run repetitions.
  1. Criteria of optimality are to be formulated in terms of sensitive behavior in hypothetical repetitions.
    (Question: What is the appropriate space which generates these hypothetical repetitions? Is it the sample space $S$ or some other reference set?)

Restricted (Weak) Repeated Sampling Principle. Do not use a procedure which for some possible parameter values gives, in hypothetical repetitions, misleading conclusions most of the time (too vague and imprecise to be constructive). The argument for repeated sampling ensures a physical meaning for the quantities we calculate and that it ensures a close relation between the analysis we make and the underlying model which is regarded as representing the “true” state of affairs.

An early form of frequentist inferences were Tests of Significance. They were long in use before their logical grounds were given by Fisher (1956b) and further elaborated by Barnard (unpublished lectures).
Prior assumption: There is a null hypothesis with no discernible alternatives. Features of a significance test (Fisher-Barnard)

  1. A significance test procedure requires a reference set $R$ (not necessarily the entire sample space) of possible results comparable with the observed result $X=x_{0}$ which also belongs to $R$.
  2. A ranking of all possible results in $R$ in order of their significance or meaning or departure from a null hypothesis $H_{0}$. More specifically we adopt a criterion $T(X)$ such that if $x_{1}>x_{2}$ (where $x_{1}$ departs further in rank than $x_{2}$ both elements of the reference set $R)$ then $T\left(x_{1}\right)>T\left(x_{2}\right)$ [if there is doubt about the ranking then there will be corresponding doubt about how the results of the significance test should be interpreted].
  3. $H_{0}$ specifies a probability distribution for $T(X)$. We then evaluate the observed result $x_{0}$ and the null hypothesis.
统计代写|统计推断作业代写statistical inference代考|A Forerunner

统计推断代考

统计代写|统计推断作业代写statistical inference代考|PROBABILISTIC INFERENCE

Rabinovitch 描述了推断概率推理的早期使用(1970).

在《民数记》第 18 章第 5 节中,有一条圣经命令要求父亲通过向祭司支付五块银子来赎回他妻子的长子(初熟果实的法则)。在 12 世纪,神学家、医生和哲学家迈蒙尼德自己解决了以下问题。假设一个或多个女人生了几个孩子,出生顺序不知道,也不知道每个母亲生了多少孩子,也不知道哪个孩子属于哪个母亲。一个特定的女人以特定的顺序生男孩和女孩的概率是多少?(假设所有排列的可能性相同,并且男性或女性出生的机会相同。)

迈蒙尼德统治如下: 两个不同丈夫的妻子,一个初产(磷)(生了第一个孩子的女人)和一个没有(磷¯). 让H成为丈夫的事件磷付钱给牧师。如果他们生了两个雄性(而且他们混在一起了),磷(H)=1−如果他们生了一个男性(米)和一个女性(F)−磷(H)=0(因为概率只有1/2初产妇生下了这个男孩)。现在,如果他们生了两男一女,磷(H)=1.
 情况1 米,米(磷)米(磷¯)米 案子 2米,F(磷)米(磷¯)F F米 磷(H)=1磷(H)=12

$付款\ begin {array {ccccc} \ text {案例3} & \ frac {(P) {{(\ bar {P})} & Y es & N o & \ \ mathrm {M}, \ mathrm {M , \ mathrm {F} & \ mathrm {M}, \ mathrm {M} & \ mathrm {F} & \ sqrt {} & \ \ mathrm F}, \ mathrm {M} & \ mathrm {M} & & \ sqrt} \ \ mathrm {M}, \ mathrm {F} & \ mathrm {M} & \ sqrt {} & \ \ mathrm {F} & \ mathrm {M}, \ mathrm {M} & & \ sqrt } \ \ mathrm {M} & \ mathrm {F}, \ mathrm {M} & \ sqrt {\ mathrm {M}} & \ \ mathrm {M} & \ mathrm {M}, \ mathrm {F} & \ sqrt} & & P (H) = \ frac {2} {3} \ end {数组米一种一世米这n一世d和sr在l和d吨H一种吨吨H和H在sb一种nd这F磷p一种是s一世nC一种s和3.吨H一世s一世nd一世C一种吨和s吨H一种吨一种pr这b一种b一世l一世吨是这F2 / 3一世ss在FF一世C一世和n吨F这r吨H和pr一世和s吨吨这r和C和一世在和H一世s5p一世和C和s这Fs一世l在和rb在吨1 / 2$ 不是。这留下了确定付款的最小概率的空白。

这里说明的是,在 12 世纪,同等可能性事件的概念、事件的独立性和概率在决策中的使用并不为人所知,尽管要理解抽样在确定概率中的使用又花了很多个世纪。 .

统计代写|统计推断作业代写statistical inference代考|TESTING USING RELATIVE FREQUENCY

Arbuthnot 最早使用相对频率来检验假设之一(1710),谁质疑出生的男性或女性的可能性是否相同。他已经在伦敦接生了 82 年。每年男性的出生人数都超过女性。然后他检验了一个假设,即出生是男性还是女性的概率或概率是均等的。p=12. 鉴于这个假设,他计算了获得所有 82 年男性超额成绩的机会(12)82. 由于这基本上是无穷小的,因此该假设被拒绝。尚不清楚如果出现了其他结果,他会如何辩解,因为任何特定结果都很小——男性和女性数量相同的最大超标小于110.

统计代写|统计推断作业代写statistical inference代考|PRINCIPLES GUIDING FREQUENTISM

经典统计推断基于相对频率考虑。Cox 和 Hinkley (1974) 给出了一个特定的正式表达式,如下所示:

重复抽样原则。统计程序将通过它们在相同条件下假设重复的行为来评估。
两个方面:

  1. 不确定性的度量将被解释为长期重复中的假设频率。
  2. 最优标准将根据假设重复中的敏感行为来制定。
    (问题:产生这些假设重复的适当空间是什么?是样本空间吗?小号或其他一些参考集?)

受限(弱)重复采样原则。不要使用对于某些可能的参数值在大多数情况下在假设的重复中给出误导性结论的程序(太模糊和不精确而无法建设性)。重复抽样的论点确保了我们计算的数量的物理意义,并确保了我们所做的分析与被视为代表“真实”事态的基础模型之间的密切关系。

频率论推论的早期形式是意义测试。在 Fisher (1956b) 给出逻辑依据并由 Barnard 进一步阐述(未发表的讲座)之前,它们已经使用了很长时间。
先验假设:存在一个零假设,没有可辨别的替代方案。显着性检验的特征(Fisher-Barnard)

  1. 显着性检验程序需要参考集R(不一定是整个样本空间)与观察结果相当的可能结果X=X0这也属于R.
  2. 所有可能结果的排名R按照它们的重要性或意义或偏离原假设的顺序H0. 更具体地说,我们采用一个标准吨(X)这样如果X1>X2(在哪里X1排名比离得更远X2参考集的两个元素R)然后吨(X1)>吨(X2)[如果对排名有疑问,那么对显着性检验的结果应该如何解释也会有相应的疑问]。
  3. H0指定概率分布吨(X). 然后我们评估观察到的结果X0和原假设。
统计代写|统计推断作业代写statistical inference代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注