### 统计代写|贝叶斯分析代写Bayesian Analysis代考|DATA5711

statistics-lab™ 为您的留学生涯保驾护航 在代写贝叶斯分析Bayesian Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写贝叶斯分析Bayesian Analysis代写方面经验极为丰富，各种代写贝叶斯分析Bayesian Analysis相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 统计代写|贝叶斯分析代写Bayesian Analysis代考|PROBABILITY MEASURES

At the core of probabilistic theory (and probabilistic modeling) lies the idea of a “sample space.” The sample space is a set $\Omega$ that consists of all possible elements over which we construct a probability distribution. In this book, the sample space most often consists of objects relating to language, such as words, phrase-structure trees, sentences, documents or sequences. As we see later, in the Bayesian setting, the sample space is defined to be a Cartesian product between a set of such objects and a set of model parameters (Section 1.5.1).

Once a sample space is determined, we can define a probability measure for that sample space. A probability measure $p$ is a function which attaches a real number to events-subsets of the sample space.
A probability measure has to satisfy three axiomatic properties:

• It has to be a non-negative function such that $p(A) \geq 0$ for any event $A$.
• For any countable disjoint sequence of events $A_{i} \subseteq \Omega, i \in{1, \ldots}$, if $A_{i} \cap A_{j}=\emptyset$ for $i \neq$ $j$, it should hold that $p\left(\bigcup_{i} A_{i}\right)=\sum_{i} p\left(A_{i}\right)$. This means that the sum of probabilities of disjoint events should equal the probability of the union of the events.
• The probability of $\Omega$ is $1: p(\Omega)=1$.

There are a few consequences from these three axiomatic properties. The first is that $p(\emptyset)=0$ (to see this, consider that $p(\Omega)+p(\emptyset)=p(\Omega \cup \emptyset)=p(\Omega)=1$ ). The second is that $p(A \cup B)=p(A)+p(B)-p(A \cap B)$ for any two events $A$ and $B$ (to see this, consider that $p(A \cup B)=p(A)+p(B \backslash(A \cap B))$ and that $p(B)=p(B \backslash(A \cap B))+p(A \cap B))$. And finally, the complement of an event $A, \Omega \backslash A$ is such that $p(\Omega \backslash A)=1-p(A)$ (to see this, consider that $1=p(\Omega)=p((\Omega \backslash A) \cup A)=p(\Omega \backslash A)+p(A)$ for any event $A)$.

In the general case, not every subset of the sample space should be considered an event.
From a measure-theoretic point of view for probability theory, an event must be a “measurable set.” The collection of measurable sets of a given sample space needs to satisfy some axiomatic properties. ${ }^{1}$ A discussion of measure theory is beyond the scope of this book, but see Ash and Doléans-Dade (2000) for a thorough investigation of this topic.

For our discrete sample spaces, consisting of linguistic structures or other language-related discrete objects, this distinction of measurable sets from arbitrary subsets of the sample space is not crucial. We will consider all subsets of the sample space to be measurable, which means they could be used as events. For continuous spaces, we will be using well-known probability measures that rely on Lebesgue’s measure. This means that the sample space will be a subset of a Euclidean space, and the set of events will be the subsets of this space that can be integrated over using Lebesgue’s integration.

## 统计代写|贝叶斯分析代写Bayesian Analysis代考|RANDOM VARIABLES

In their most basic form, random variables are functions that map each $w \in \Omega$ to a real value. They are often denoted by capital letters such as $X$ and $Z$. Once such a function is defined, under some regularity conditions, it induces a probability measure over the real numbers. More specifically, for any $A \subseteq \mathbb{R}$ such that the pre-image, $X^{-1}(A)$, defined as, ${\omega \in \Omega \mid X(\omega) \in A}$, is an event, its probability is:
$$p_{X}(A)=p(X \in A)=p\left(X^{-1}(A)\right),$$
where $p_{X}$ is the probability measure induced by the random variable $X$ and $p$ is a probability measure originally defined for $\Omega$. The sample space for $p_{X}$ is $\mathbb{R}$. The set of events for this sample space includes all $A \subseteq \mathbb{R}$ such that $X^{-1}(A)$ is an event in the original sample space $\Omega$ of $p$.
It is common to define a statistical model directly in terms of random variables, instead of explicitly defining a sample space and its corresponding real-value functions. In this case, random variables do not have to be interpreted as real-value functions and the sample space is understood to be a range of the random variable function. For example, if one wants to define a probability distribution over a language vocabulary, then one can define a random variable $X(\omega)=\omega$ with $\omega$ ranging over words in the vocabulary. Following this, the probability of a word in the vocabulary is denoted by $p(X \in{\omega})=p(X=\omega)$.

## 统计代写|贝叶斯分析代写Bayesian Analysis代考|CONTINUOUS AND DISCRETE RANDOM VARIABLES

This book uses the two most common kinds of random variables available in statistics: continuous and discrete. Continuous random variables take values in a continuous space, usually a subspace of $\mathbb{R}^{d}$ for $d \geq 1$. Discrete random variables, on the other hand, take values from a discrete, possibly countable set. In this book, discrete variables are usually denoted using capital letters such as $X, Y$ and $Z$, while continuous variables are denoted using greek letters, such as $\theta$ and $\mu$.

The continuous variables in this book are mostly used to define a prior over the parameters of a discrete distribution, as is usually done in the Bayesian setting. See Section $1.5 .2$ for a discussion of continuous variables. The discrete variables, on the other hand, are used to model structures that will be predicted (such as parse trees, part-of-speech tags, alignments, clusters) or structures which are observed (such as a sentence, a string over some language vocabulary or other such sequences).

The discrete variables discussed in this book are assumed to have an underlying probability mass function (PMF)-i.e., a function that attaches a weight to each element in the sample space, $p(x)$. This probability mass function induces the probability measure $p(X \in A)$, which satisfies:
$$p(X \in A)=\sum_{x \in A} p(x),$$
where $A$ is a subset of the possible values $X$ can take. Note that this equation is the result of the axiom of probability measures, where the probability of an event equals the sum of probabilities of disjoint events that precisely cover that event (singletons, in our case).

## 统计代写|贝叶斯分析代写Bayesian Analysis代考|PROBABILITY MEASURES

• 它必须是一个非负函数，使得 $p(A) \geq 0$ 对于任何事件 $A$.
• 对于任何可数的不相交的事件序列 $A_{i} \subseteq \Omega, i \in 1, \ldots$ ，如果 $A_{i} \cap A_{j}=\emptyset$ 为了 $i \neq j$ ，它应该认为 $p\left(\bigcup_{i} A_{i}\right)=\sum_{i} p\left(A_{i}\right)$. 这意味着不相交事件的概率之和应该等于事件联合的概率。
• 的概率 $\Omega$ 是 $1: p(\Omega)=1$.
这三个公理性质有一些结果。第一个是 $p(\emptyset)=0$ (要看到这一点，请考虑
$p(\Omega)+p(\emptyset)=p(\Omega \cup \emptyset)=p(\Omega)=1)$ 。第二个是 $p(A \cup B)=p(A)+p(B)-p(A \cap B)$ 对于任何两 个事件 $A$ 和 $B$ (要看到这一点，请考虑 $p(A \cup B)=p(A)+p(B \backslash(A \cap B))$ 然后
$p(B)=p(B \backslash(A \cap B))+p(A \cap B))$. 最后，事件的补充 $A, \Omega \backslash A$ 是这样的 $p(\Omega \backslash A)=1-p(A)$ (要看到 这一点，请考虑 $1=p(\Omega)=p((\Omega \backslash A) \cup A)=p(\Omega \backslash A)+p(A)$ 对于任何事件 $A)$.
在一般情况下，并非样本空间的每个子集都应被视为一个事件。
从概率论的测度论观点来看，一个事件必须是一个”可测集”。给定样本空间的可测量集的集合需要满足一些公理性 质。 1 测度论的讨论超出了本书的范围，但请参阅 Ash 和 Doléans-Dade (2000) 对该主题的深入研究。
对于我们的离散样本空间，由语言结构或其他与语言相关的离散对象组成，可测量集与样本空间任意子集的区别并 不重要。我们将认为样本空间的所有子集都是可测量的，这意味着它们可以用作事件。对于连续空间，我们将使用 依赖于 Lebesgue 测度的众所周知的概率测度。这意味着样本空间将是欧几里得空间的子集，而事件集将是该空间 的子集，可以使用 Lebesgue 积分进行积分。

## 统计代写|贝叶斯分析代写Bayesian Analysis代考|RANDOM VARIABLES

$$p_{X}(A)=p(X \in A)=p\left(X^{-1}(A)\right),$$

$$p(X \in \omega)=p(X=\omega) \text {. }$$

## 统计代写|贝叶斯分析代写Bayesian Analysis代考|CONTINUOUS AND DISCRETE RANDOM VARIABLES

$$p(X \in A)=\sum_{x \in A} p(x)$$

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。