统计代写|贝叶斯分析代写Bayesian Analysis代考|Finite and infinite population inference

如果你也在 怎样代写贝叶斯分析Bayesian Analysis这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

贝叶斯分析,一种统计推断方法(以英国数学家托马斯-贝叶斯命名),允许人们将关于人口参数的先验信息与样本所含信息的证据相结合,以指导统计推断过程。

statistics-lab™ 为您的留学生涯保驾护航 在代写贝叶斯分析Bayesian Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写贝叶斯分析Bayesian Analysis代写方面经验极为丰富,各种代写贝叶斯分析Bayesian Analysis相关的作业也就用不着说。

我们提供的贝叶斯分析Bayesian Analysis及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|贝叶斯分析代写Bayesian Analysis代考|Finite and infinite population inference

统计代写|贝叶斯分析代写Bayesian Analysis代考|Finite and infinite population inference

In the last example (Exercise 1.8), with the model:
$$
(y \mid \theta) \sim \operatorname{Binomial}(n, \theta)
$$
$$
\theta \sim \operatorname{Beta}(\alpha, \beta),
$$
the quantity of interest $\theta$ is the probability of success on a single Bernoulli trial.

This quantity may be thought of as the average of a hypothetically infinite number of Bernoulli trials. For that reason we may refer to derivation of the posterior distribution,
$$
(\theta \mid y) \sim \operatorname{Beta}(\alpha+y, \beta+n-y),
$$
as infinite population inference.
In contrast, for the ‘buses’ example further above (Exercise 1.6), which involves the model:
$$
\begin{aligned}
&f(y \mid \theta)=1 / \theta, y=1, \ldots, \theta \
&f(\theta)=1 / 5, \theta=1, \ldots, 5
\end{aligned}
$$
the quantity of interest $\theta$ represents the number of buses in a population of buses, which of course is finite.
Therefore derivation of the posterior,
$$
f(\theta \mid y)=\left{\begin{array}{l}
20 / 47, \theta=3 \
15 / 47, \theta=4 \
12 / 47, \theta=5
\end{array}\right.
$$
may be termed finite population inference.
Another example of finite population inference is the ‘balls in a box’ example (Exercise 1.7), where the model is:
$$
\begin{aligned}
&(y \mid \theta) \sim \operatorname{Hyp}(N, \theta, n) \
&\theta \sim D U(1, \ldots, N)
\end{aligned}
$$
and where the quantity of interest $\theta$ is the number of red balls initially in the selected box $(1,2, \ldots, 8$ or 9$)$.

And another example of infinite population inference is the ‘loaded dice’ example (Exercises $1.4$ and $1.5$ ), where the model is:
$$
\begin{aligned}
&f(y \mid \theta)=\left(\begin{array}{c}
2 \
y
\end{array}\right) \theta^{y}(1-\theta)^{2-y}, y=0,1,2 \
&f(\theta)=10 \theta / 6, \theta=0.1,0.2,0.3
\end{aligned}
$$ and where the quantity of interest $\theta$ is the probability of 6 coming up on a single roll of the chosen die (i.e. the average number of $6 s$ that come up on a hypothetically infinite number of rolls of that particular die).

统计代写|贝叶斯分析代写Bayesian Analysis代考|Continuous data

So far, all the Bayesian models considered have featured data which is modelled using a discrete distribution. (Some of these models have a discrete parameter and some have a continuous parameter.) The following is an example with data that follows a continuous probability distribution. (This example also has a continuous parameter.)
Exercise 1.9 The exponential-exponential model
Suppose $\theta$ has the standard exponential distribution, and the conditional distribution of $y$ given $\theta$ is exponential with mean $1 / \theta$. Find the posterior density of $\theta$ given $y$.
Solution to Exercise $1.9$
The Bayesian model here is: $f(y \mid \theta)=\theta e^{-\theta y}, y>0$
$$
f(\theta)=e^{-\theta}, \theta>0 .
$$
So $f(\theta \mid y) \propto f(\theta) f(y \mid \theta) \propto e^{-\theta} \times \theta e^{-\theta y}=\theta^{2-1} e^{-\theta(y+1)}, y>0$.
This is the kernel of a gamma distribution with parameters 2 and $y+1$, as per the definitions in Appendix B.2. Thus we may write
$$
(\theta \mid y) \sim \operatorname{Gamma}(2, y+1),
$$
from which it follows that the posterior density of $\theta$ is
$$
f(\theta \mid y)=\frac{(y+1)^{2} \theta^{2-1} e^{-\theta(y+1)}}{\Gamma(2)}, \theta>0 .
$$

统计代写|贝叶斯分析代写Bayesian Analysis代考|Conjugacy

When the prior and posterior distributions are members of the same class of distributions, we say that they form a conjugate pair, or that the prior is conjugate. For example, consider the binomial-beta model:
$$
\begin{array}{rll}
& (y \mid \theta) \sim \operatorname{Binomial}(n, \theta) & \
& \theta \sim \operatorname{Beta}(\alpha, \beta) & \text { (prior) } \
\Rightarrow & (\theta \mid y) \sim \operatorname{Beta}(\alpha+y, \beta+n-y) & \text { (posterior). }
\end{array}
$$
Since both prior and posterior are beta, the prior is conjugate.
Likewise, consider the exponential-exponential model:
$$
\begin{array}{rll}
& f(y \mid \theta)=\theta e^{-\theta y}, y>0 & \
& \left.f(\theta)=e^{-\theta}, \theta>0 \quad \text { (i.e. } \theta \sim \operatorname{Gamma}(1,1)\right) & \text { (prior) } \
\Rightarrow & (\theta \mid y) \sim \operatorname{Gamma}(2, y+1) \quad \text { (posterior). }
\end{array}
$$

Since both prior and posterior are gamma, the prior is conjugate.
On the other hand, consider the model in the buses example:
$(y \mid \theta) \sim D U(1, \ldots, \theta)$
$\theta \sim D U(1, \ldots, 5)$
$\Rightarrow f(\theta \mid y=3)=\left{\begin{array}{l}20 / 47, \theta=3 \ 15 / 47, \theta=4 \ 12 / 47, \theta=5\end{array}\right.$
The prior is discrete uniform but the posterior is not. So in this case the prior is not conjugate.

Specifying a Bayesian model using a conjugate prior is generally desirable because it can simplify the calculations required.

统计代写|贝叶斯分析代写Bayesian Analysis代考|Finite and infinite population inference

贝叶斯分析代考

统计代写|贝叶斯分析代写Bayesian Analysis代考|Finite and infinite population inference

在最后一个示例(练习 1.8)中,使用模型:

(是∣θ)∼二项式⁡(n,θ)

θ∼贝塔⁡(一个,b),
感兴趣的数量θ是单次伯努利试验的成功概率。

这个量可以被认为是假设无限次伯努利试验的平均值。出于这个原因,我们可以参考后验分布的推导,

(θ∣是)∼贝塔⁡(一个+是,b+n−是),
作为无限人口推断。
相反,对于上面的“公共汽车”示例(练习 1.6),它涉及模型:

F(是∣θ)=1/θ,是=1,…,θ F(θ)=1/5,θ=1,…,5
感兴趣的数量θ表示公共汽车中的公共汽车数量,这当然是有限的。
因此推导后验,
$$
f(\theta \mid y)=\left{

20/47,θ=3 15/47,θ=4 12/47,θ=5\正确的。

米一个是b和吨和r米和dF一世n一世吨和p○p在l一个吨一世○n一世nF和r和nC和.一个n○吨H和r和X一个米pl和○FF一世n一世吨和p○p在l一个吨一世○n一世nF和r和nC和一世s吨H和‘b一个lls一世n一个b○X′和X一个米pl和(和X和rC一世s和1.7),在H和r和吨H和米○d和l一世s:

(是∣θ)∼炒作⁡(ñ,θ,n) θ∼D在(1,…,ñ)
$$
和感兴趣的数量θ是最初在选定框中的红球数(1,2,…,8或 9).

无限人口推断的另一个例子是“加载骰子”的例子(练习1.4和1.5),其中模型为:

F(是∣θ)=(2 是)θ是(1−θ)2−是,是=0,1,2 F(θ)=10θ/6,θ=0.1,0.2,0.3以及感兴趣的数量θ是 6 出现在所选骰子的单个掷骰上的概率(即平均数量6s假设该特定骰子的掷骰数是无限的)。

统计代写|贝叶斯分析代写Bayesian Analysis代考|Continuous data

到目前为止,所有考虑的贝叶斯模型都具有使用离散分布建模的特征数据。(其中一些模型具有离散参数,而另一些具有连续参数。)以下是一个示例,其中的数据遵循连续概率分布。(这个例子也有一个连续参数。)
练习 1.9 指数-指数模型
假设θ具有标准指数分布和条件分布是给定θ是指数的平均值1/θ. 求后验密度θ给定是.
运动解决方案1.9
这里的贝叶斯模型是:F(是∣θ)=θ和−θ是,是>0

F(θ)=和−θ,θ>0.
所以F(θ∣是)∝F(θ)F(是∣θ)∝和−θ×θ和−θ是=θ2−1和−θ(是+1),是>0.
这是具有参数 2 和是+1,根据附录 B.2 中的定义。因此我们可以写

(θ∣是)∼伽玛⁡(2,是+1),
由此得出后验密度θ是

F(θ∣是)=(是+1)2θ2−1和−θ(是+1)Γ(2),θ>0.

统计代写|贝叶斯分析代写Bayesian Analysis代考|Conjugacy

当先验分布和后验分布是同一类分布的成员时,我们说它们形成了共轭对,或者说先验是共轭的。例如,考虑二项式 beta 模型:

(是∣θ)∼二项式⁡(n,θ) θ∼贝塔⁡(一个,b) (事先的)  ⇒(θ∣是)∼贝塔⁡(一个+是,b+n−是) (后)。 
由于先验和后验都是 beta,因此先验是共轭的。
同样,考虑指数-指数模型:

F(是∣θ)=θ和−θ是,是>0 F(θ)=和−θ,θ>0 (IE θ∼伽玛⁡(1,1)) (事先的)  ⇒(θ∣是)∼伽玛⁡(2,是+1) (后)。 

由于先验和后验都是伽马,因此先验是共轭的。
另一方面,考虑总线示例中的模型:
(是∣θ)∼D在(1,…,θ)
θ∼D在(1,…,5)
$\Rightarrow f(\theta \mid y=3)=\left{

20/47,θ=3 15/47,θ=4 12/47,θ=5\right.$
先验是离散均匀的,但后验不是。所以在这种情况下,先验不是共轭的。

通常需要使用共轭先验指定贝叶斯模型,因为它可以简化所需的计算。

统计代写|贝叶斯分析代写Bayesian Analysis代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。