### 统计代写|贝叶斯分析代写Bayesian Analysis代考|MAST90125

statistics-lab™ 为您的留学生涯保驾护航 在代写贝叶斯分析Bayesian Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写贝叶斯分析Bayesian Analysis代写方面经验极为丰富，各种代写贝叶斯分析Bayesian Analysis相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 统计代写|贝叶斯分析代写Bayesian Analysis代考|Bayesian predictive inference

In addition to estimating model parameters (and functions of those parameters) there is often interest in predicting some future data (or some other quantity which is not just a function of the model parameters).

Consider a Bayesian model specified by $f(y \mid \theta)$ and $f(\theta)$, with posterior as derived in ways already discussed and given by $f(\theta \mid y)$.
Now consider any other quantity $x$ whose distribution is defined by a density of the form $f(x \mid y, \theta)$.

The posterior predictive distribution of $x$ is given by the posterior predictive density $f(x \mid y)$. This can typically be derived using the following equation:
\begin{aligned} f(x \mid y) &=\int f(x, \theta \mid y) d \theta \ &=\int f(x \mid y, \theta) f(\theta \mid y) d \theta \end{aligned}
Note: For the case where $\theta$ is discrete, a summation needs to be performed rather than an integral.

The posterior predictive density $f(x \mid y)$ forms a basis for making probability statements about the quantity $x$ given the observed data $y$.
Point and interval estimation for future values $x$ can be performed in very much the same way as that for model parameters, except with a slightly different terminology.

Now, instead of referring to $\hat{x}=E(x \mid y)$ as the posterior mean of $x$, we may instead use the term predictive mean.

Also, the ‘ $\mathrm{P}$ ‘ in HPDR, and CPDR may be read as predictive rather than as posterior. For example, the CPDR for $x$ is now the central predictive density region for $x$.
As an example of point prediction, the predictive mean of $x$ is
$$\hat{x}=E(x \mid y)=\int x f(x \mid y) d x .$$

Often it is easier to obtain the predictive mean of $x$ using the equation
\begin{aligned} \hat{x}=E(x \mid y) &=E{E(x \mid y, \theta) \mid y} \ &=\int E(x \mid y, \theta) f(\theta \mid y) d \theta \end{aligned}

## 统计代写|贝叶斯分析代写Bayesian Analysis代考|Posterior predictive p-values

Earlier, in Section 1.3, we discussed Bayes factors as a form of hypothesis testing within the Bayesian framework. An entirely different way to perform hypothesis testing in that framework is via the theory of posterior predictive $p$-values (Meng, 1994). As in the theory of Bayes factors, this involves first specifying a null hypothesis
$$H_{0}: E_{0}$$
and an alternative hypothesis
$$H_{1}: E_{1} \text {, }$$
where $E_{0}$ and $E_{1}$ are two events.
Note: As in Section $1.3, E_{0}$ and $E_{1}$ may or may not be disjoint. Also, $E_{0}$ and $E_{1}$ may instead represent two different models for the same data.
In the context of a single Bayesian model with data $y$ and parameter $\theta$, the theory of posterior predictive p-values involves the following steps:
(i) Define a suitable discrepancy measure (or test statistic), denoted $T(y, \theta)$,
following careful consideration of both $H_{0}$ and $H_{1}$ (see below).
(ii) Define $x$ as an independent future replicate of the data $y$.
(iii) Calculate the posterior predictive $p$-value (ppp-value), defined as
$$p=P{T(x, \theta) \geq T(y, \theta) \mid y} .$$
Note 1: The ppp-value is calculated under the implicit assumption that $H_{0}$ is true. Thus we could also write $p=P\left{T(x, \theta) \geq T(y, \theta) \mid y, H_{0}\right}$.
Note 2 : The discrepancy measure may or may not depend on the model parameter, $\theta$. Thus in some cases, $T(y, \theta)$ may also be written as $T(y)$.
The underlying idea behind the choice of discrepancy measure $T$ is that if the observed data $y$ is highly inconsistent with $H_{0}$ in favour of $H_{1}$ then $p$ should likely be small. This is the same idea as behind classical hypothesis testing. In fact, the classical theory may be viewed as a special case of the theory of ppp-values. The advantage of the ppp-value framework is that it is far more versatile and can be used in situations where it is not obvious how the classical theory should be applied.

## 统计代写|贝叶斯分析代写Bayesian Analysis代考|Bayesian models with multiple parameters

So far we have examined Bayesian models involving some data $y$ and a parameter $\theta$, where $\theta$ is a strictly scalar quantity. We now consider the case of Bayesian models with multiple parameters, starting with a focus on just two, say $\theta_{1}$ and $\theta_{2}$. In that case, the Bayesian model may be defined by specifying $f(y \mid \theta)$ and $f(\theta)$ in the same way as previously, but with an understanding that $\theta$ is a vector of the form $\theta=\left(\theta_{1}, \theta_{2}\right)$.
The first task now is to find the joint posterior density of $\theta_{1}$ and $\theta_{2}$, according to
$$f(\theta \mid y) \propto f(\theta) f(y \mid \theta),$$
or equivalently
$$f\left(\theta_{1}, \theta_{2} \mid y\right) \propto f\left(\theta_{1}, \theta_{2}\right) f\left(y \mid \theta_{1}, \theta_{2}\right),$$
where
$$f(\theta)=f\left(\theta_{1}, \theta_{2}\right)$$
is the joint prior density of the two parameters.
Often, this joint prior density is specified as an unconditional prior multiplied by a conditional prior, for example as
$$f\left(\theta_{1}, \theta_{2}\right)=f\left(\theta_{1}\right) f\left(\theta_{2} \mid \theta_{1}\right) .$$
Once a Bayesian model with two parameters has been defined, one task is to find the marginal posterior densities of $\theta_{1}$ and $\theta_{2}$, respectively, via the equations:
\begin{aligned} &f\left(\theta_{1} \mid y\right)=\int f\left(\theta_{1}, \theta_{2} \mid y\right) d \theta_{2} \ &f\left(\theta_{2} \mid y\right)=\int f\left(\theta_{1}, \theta_{2} \mid y\right) d \theta_{1} \end{aligned}

## 统计代写|贝叶斯分析代写Bayesian Analysis代考|Bayesian predictive inference

F(X∣是)=∫F(X,θ∣是)dθ =∫F(X∣是,θ)F(θ∣是)dθ

X^=和(X∣是)=∫XF(X∣是)dX.

X^=和(X∣是)=和和(X∣是,θ)∣是 =∫和(X∣是,θ)F(θ∣是)dθ

## 统计代写|贝叶斯分析代写Bayesian Analysis代考|Posterior predictive p-values

H0:和0

H1:和1,

(i) 定义合适的差异度量（或检验统计量），表示为吨(是,θ)，

(ii) 定义X作为数据的独立未来副本是.
(iii) 计算后验预测p-值（ppp值），定义为

p=磷吨(X,θ)≥吨(是,θ)∣是.

## 统计代写|贝叶斯分析代写Bayesian Analysis代考|Bayesian models with multiple parameters

F(θ∣是)∝F(θ)F(是∣θ),

F(θ1,θ2∣是)∝F(θ1,θ2)F(是∣θ1,θ2),

F(θ)=F(θ1,θ2)

F(θ1,θ2)=F(θ1)F(θ2∣θ1).

F(θ1∣是)=∫F(θ1,θ2∣是)dθ2 F(θ2∣是)=∫F(θ1,θ2∣是)dθ1

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。