### 统计代写|随机分析作业代写stochastic analysis代写|MATH477

statistics-lab™ 为您的留学生涯保驾护航 在代写随机分析stochastic analysisl方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写随机分析stochastic analysisl代写方面经验极为丰富，各种代写随机分析stochastic analysisl相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 统计代写|随机分析作业代写stochastic analysis代写|Probability Space

It is useful to put these intuitive notions of probability on a firm mathematical basis, as was done by Kolmogorov. For this purpose, we need the notion of probability space, often written as a triplet $(\Omega, \mathcal{F}, \mathbb{P})$, defined as follows.
Definition 1.1 (Sample space). The sample space $\Omega$ is the set of all possible outcomes. Each element $\omega \in \Omega$ is called a sample point.

Definition $1.2$ ( $\sigma$-algebra). A $\sigma$-algebra (or $\sigma$-field) $\mathcal{F}$ is a collection of subsets of $\Omega$ that satisfies the following conditions:
(i) $\Omega \in \mathcal{F}$
(ii) if $A \in \mathcal{F}$, then $A^{c} \in \mathcal{F}$, where $A^{c}=\Omega \backslash A$ is the complement of $A$ in $\Omega$;
(iii) if $A_{1}, A_{2}, \ldots \in \mathcal{F}$, then $\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{F}$.
Each set $A$ in $\mathcal{F}$ is called an event. Let $\mathcal{B}$ be a collection of subsets of
$\Omega$. We denote by $\sigma(\mathcal{B})$ the smallest $\sigma$-algebra generated by the sets in $\mathcal{B}$, i.e., the smallest $\sigma$-algebra that contains $\mathcal{B}$. The pair $(\Omega, \mathcal{F})$ with the above properties is called a measurable space.

Definition $1.3$ (Probability measure). The probability measure $\mathbb{P}: \mathcal{F} \rightarrow$ $[0,1]$ is a set function defined on $\mathcal{F}$ which satisfies
(a) $\mathbb{P}(\emptyset)=0, \mathbb{P}(\Omega)=1$;
(b) if $A_{1}, A_{2}, \ldots \in \mathcal{F}$ are pairwise disjoint, i.e., $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$, then
$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)$$
(1.1) is called countable additivity or $\sigma$-additivity.

## 统计代写|随机分析作业代写stochastic analysis代写|Conditional Probability

Let $A, B \in \mathcal{F}$ and assume that $\mathbb{P}(B) \neq 0$. Then the conditional probability of $A$ given $B$ is defined as
$$\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$
This is the proportion of events that both $A$ and $B$ occur given that $B$ occurs. For instance, the probability to obtain two tails in two tosses of a fair coin is $1 / 4$, but the conditional probability to obtain two tails is $1 / 2$ given that the first toss is a tail, and it is zero given that the first toss is a head.
Since $\mathbb{P}(A \cap B)=\mathbb{P}(A \mid B) \mathbb{P}(B)$ by definition, we also have
$$\mathbb{P}(A \cap B \cap C)=\mathbb{P}(A \mid B \cap C) \mathbb{P}(B \mid C) \mathbb{P}(C),$$
and so on. It is straightforward to obtain
$$\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A) \mathbb{P}(B \mid A)}{\mathbb{P}(B)}$$
from the definition of conditional probability. This is called Bayes’s rule.

## 统计代写|随机分析作业代写stochastic analysis代写|Probability Space

(i) $\Omega \in \mathcal{F}$
(ii) 如果 $A \in \mathcal{F}$ ，然后 $A^{c} \in \mathcal{F}$ ，在哪里 $A^{c}=\Omega \backslash A$ 是的补码 $A$ 在 $\Omega$;
(iii) 如果 $A_{1}, A_{2}, \ldots \in \mathcal{F}$ ，然后 $\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{F}$.

$\Omega$. 我们表示 $\sigma(\mathcal{B})$ 最小的 $\sigma$ – 由集合生成的代数 $\mathcal{B}$ ，即最小的 $\sigma$-代数包含 $\mathcal{B}$. 这对 $(\Omega, \mathcal{F})$ 具有上述性质的空间称为可 测空间。

(a) $\mathbb{P}(\emptyset)=0, \mathbb{P}(\Omega)=1$;
(b) 如果 $A_{1}, A_{2}, \ldots \in \mathcal{F}$ 是成对不相交的，即 $A_{i} \cap A_{j}=\emptyset$ 如果 $i \neq j$ ，然后
$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)$$
(1.1) 称为可数可加性或 $\sigma$-可加性。

## 统计代写|随机分析作业代写stochastic analysis代写|Conditional Probability

$$\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

$$\mathbb{P}(A \cap B \cap C)=\mathbb{P}(A \mid B \cap C) \mathbb{P}(B \mid C) \mathbb{P}(C)$$

$$\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A) \mathbb{P}(B \mid A)}{\mathbb{P}(B)}$$

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。