统计代写|风险建模代写Financial risk modeling代考|Market Microstructure of the Foreign Exchange Markets

如果你也在 怎样代写风险建模Financial risk modeling这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

风险建模是确定有多少风险存在于一个特定的企业、投资或一系列的现金流中。

statistics-lab™ 为您的留学生涯保驾护航 在代写风险建模Financial risk modeling方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写风险建模Financial risk modeling代写方面经验极为丰富,各种代写风险建模Financial risk modeling相关的作业也就用不着说。

我们提供的风险建模Financial risk modeling及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
Competition: Wind-dependent Variables: Predict Wind Speeds of Tropical  Storms
统计代写|风险建模代写Financial risk modeling代考|Market Microstructure of the Foreign Exchange Markets

统计代写|风险建模代写Financial risk modeling代考|Evidence from the Electronic Broking System

The foreign exchange market remains sleepless. In contrast to stock exchange markets which are subject to strict opening and closing times each day and where transactions are done in a specific space (such as the New York Stock Exchange and Tokyo Stock Exchange), someone is trading somewhere all the time $-24$ hours a day, (almost) 7 days a week in foreign exchange markets.

The state of the global foreign exchange market is clarified by a market survey conducted by central banks under coordination of the Bank for International Settlements (BIS) once every three years. The most recent survey was conducted in April 2007 and the BIS report was issued in 2007. According to the survey, as shown in Table 3.1, following a brief decline between 1998 and 2001, the average daily turnover of the foreign exchange steadily increased after 2001 reaching $\$ 1.8$ trl in 2004 followed by the record high of $\$ 3.1$ trl in $2007.1$ Of the turnover in 2007 , spot transactions accounted for $\$ 1005$ billion, ${ }^{2}$ outright forward $\$ 361$ for billion and swaps $\$ 1714$ billion. Decomposing into currencies, approximately 43 percent of transactions are in US dollars, 18 percent are in euros, 8 percent in Japanese yen, 7 percent in pound sterling and 3 percent in Swiss francs. As for the currency pairs, $\$$ /euro accounted for $\$ 840$ bil, $\$ /$ yen for $\$ 397$ bil and \$/GBP for $\$ 361$ bil.

Foreign exchange transactions take place between dealers of reporting financial institutions, between a dealer and another financial institution or between a dealer and a nonfinancial customer. One of the remarkable features is a recent sharp increase in transactions between dealers and other financial institutions, whereas the percentage share of transactions between dealers and between dealers and nonfinancial institutions remains almost constant. The declining share of transactions between dealers who report to the BIS surveys can be partly explained by the grow ing role of electronic brokers in the spot interbank market. 3 This trend means that “hot potatoes” (Lyons, 1997), transmissions of orders by large retail customers to a bank that generate multiplied transactions in the interbank market through a price discovery process, are less important now and a cool supercomputer has become increasingly important.

统计代写|风险建模代写Financial risk modeling代考|Literature review

Conventional wisdom in the academic literature is that the exchange rate follows random walk for frequencies less than annual, for example, daily, weekly or even monthly, whereas it sometimes shows time trends, cyclicality or, in general, history dependence at lower frequencies. While traditional economics textbooks are based on the random-walk hypothesis, financial institutions continue to bet millions of dollars on the predictability of exchange rate movements. The gap between the random walk in academia and the prediction model in the real world is remarkable, but in recent years there has been a growing academic

literature on exchange rate forecasting and empirical investigation using high-frequency data – “market microstructure” analysis. 4

As for predictability and random walk, using high-frequency deal and quote prices of USDJPY and EURUSD exchange rates, Hashimoto et al. (2008) found that deal price movements tend to continue a run once started, whereas quote prices mostly follow a random walk. Ito and Hashimoto (2008) showed by using high-frequency data from the actual trade platform that exchange rates could be predictable at up to five minutes and the predictability disappears after 30 minutes. Evans and Lyons (2005a, 2005b) also examined daily EURUSD exchange rate returns based on the end-user data and found a persistent (days) effect in currency markets.

Some studies focus on whether exchange rates respond to pressures of customers’ orders. Evans and Lyons (2002), for example, reported a positive relation between daily exchange rate returns and order flows for Deutsche mark/dollar. Love and Payne (2003) and Berger et al. (2005) studied the contemporaneous relationship between order flow and the exchange rate. Evans and Lyons (2005c) consider heterogeneity of order flow in estimating its price impact. Based on the end-user order flow data, they show that order flow provides information to market makers. Lyons’ series of papers $(1995,1996,1997,1998,2001)$ developed a theoretical model of order flows and information transmission. In line with the information and pricing in markets, Lyons and Moore (2005) found that exchange rate prices are affected by transactions.

Intraday activities such as the number of deals and transaction volume in foreign exchange markets are also of interest in the market microstructure analysis. Admati and Pfleiderer (1988), Brock and Kleidon (1992) and Hsieh and Kleidon (1996) provided theoretical and empirical backgrounds of intraday patterns of the bid-ask spread and volatility. Baillie and Bollerslev (1990) and Andersen and Bollerslev (1997, 1998) were some of the earliest studies that examined intraday volatility of exchange rates using indicative quotes. Finally, Chaboud et al. (2004), Berger et al. (2005) and Ito and Hashimoto $(2006,2008)$ examine the intraday behavior of exchange rates using up-to-date high-frequency data.

统计代写|风险建模代写Financial risk modeling代考|Data

The spot foreign exchange markets have evolved in recent years and now the overwhelming majority of spot foreign exchange transactions are executed through a global electronic broking systems such as EBS and Reuters D-3000. These electronic broking systems provide trading technology and display quotes and transactions continuously for 24 hours a day. Fifteen years ago brokers in the interbank market were mostly human and direct deals between dealers held a substantial share of the spot market. The foreign exchange market of today is very different. Now, each financial institution that establishes an account with EBS and/or Reuters D-3000 is given a specific computer screen and is able to trade via this screen by putting in and hitting prices. The EBS has a stronger market share in absolute terms than Reuters D-3000 in currencies such as the dollar/yen, euro/dollar, euro/yen, euro/chf etc., and is said to cover more than 90 percent of the dollar/yen and euro/dollar trades. In

contrast, Reuters has significant market share in transactions related to the pound sterling, the Canadian dollar and the Australian dollar.

The EBS data set has advantages over the frequently used indicative quotes of exchange rate data such as the FXFX of Reuters in at least two important aspects. First, the quotes in the EBS data set are “firm,” in that banks that post quotes are committed to trade at those quoted prices, when they are “hit.” . In contrast, the indicative quotes of the FXFX screen are those input by dealers for information only, without any commitment for trade. Indicative quotes are much less reliable than firm quotes in capturing the whole picture of a market reality. Second, transactions’ data available in the EBS data set is simply not available on the FXFX screen. Although exact trading volume is not disclosed, transaction counts (counts of seconds that had at least one transaction) and trade volume shares (a percentage share of trading volumes in one minute) are available in the EBS data set.

As part of facilitating an orderly market, EBS requires any newly linked institution to secure a sufficient number of other banks that are willing to open credit lines with the newcomer. A smaller or a regional bank may have fewer trading relationships, thus not as many credit relationships. Then the best bid and ask for that institution may be different from the best bid and ask of the market. A smaller or regional bank may post more aggressive prices (higher bids or lower asks) because they will have relatively fewer credit relationships, implying that they will see fewer dealable prices generally.

统计代写|风险建模代写Financial risk modeling代考|Market Microstructure of the Foreign Exchange Markets

风险建模代写

统计代写|风险建模代写Financial risk modeling代考|Evidence from the Electronic Broking System

外汇市场依然不眠不休。与每天都有严格的开市和收市时间以及在特定空间进行交易的证券交易所市场(例如纽约证券交易所和东京证券交易所)相比,有人一直在某处交易−24每天几个小时,(几乎)每周 7 天在外汇市场上。

由中央银行在国际清算银行 (BIS) 的协调下每三年进行一次的市场调查澄清了全球外汇市场的状况。最近一次调查于 2007 年 4 月进行,BIS 报告于 2007 年发布。根据调查,如表 3.1 所示,外汇日均成交量在经历了 1998 年至 2001 年的短暂下降后,2001 年之后稳步上升到达$1.8trl 在 2004 年之后创下历史新高$3.1输入2007.12007年营业额中,现货交易占$1005十亿,2彻底向前$361十亿和掉期$1714十亿。分解成货币,大约 43% 的交易是美元,18% 是欧元,8% 是日元,7% 是英镑,3% 是瑞士法郎。至于货币对,$/欧元占$840比尔,$/日元$397bil 和$ /GBP 为$361比尔。

外汇交易发生在报告金融机构的交易商之间、交易商与另一家金融机构之间或交易商与非金融客户之间。显着特点之一是近期交易商与其他金融机构之间的交易急剧增加,而交易商之间以及交易商与非金融机构之间的交易百分比几乎保持不变。向 BIS 调查报告的交易商之间的交易份额下降的部分原因是电子经纪人在现货银行同业市场中的作用越来越大。3 这种趋势意味着“烫手山芋”(Lyons,1997 年),大型零售客户向银行传输订单,通过价格发现过程在银行间市场产生成倍的交易,

统计代写|风险建模代写Financial risk modeling代考|Literature review

学术文献中的传统观点是,汇率在低于年度的频率下遵循随机游走,例如,每天、每周甚至每月,而它有时会显示时间趋势、周期性或一般而言,较低频率的历史依赖性。虽然传统经济学教科书基于随机游走假设,但金融机构继续将数百万美元押在汇率变动的可预测性上。学术界的随机游走与现实世界的预测模型之间的差距是显着的,但近年来学术界越来越多

使用高频数据进行汇率预测和实证研究的文献——“市场微观结构”分析。4

至于可预测性和随机游走,使用 USDJPY 和 EURUSD 汇率的高频交易和报价,Hashimoto 等人。(2008) 发现交易价格的变动往往会在开始后继续运行,而报价大多遵循随机游走。Ito 和 Hashimoto(2008)通过使用来自实际贸易平台的高频数据表明,汇率在 5 分钟内可以预测,30 分钟后可预测性消失。Evans 和 Lyons (2005a, 2005b) 还根据最终用户数据检查了每日 EURUSD 汇率回报,并发现货币市场存在持续(天数)效应。

一些研究侧重于汇率是否对客户订单的压力作出反应。例如,Evans 和 Lyons (2002) 报告了每日汇率回报与德国马克/美元订单流之间的正相关关系。Love and Payne (2003) 和 Berger 等人。(2005)研究了订单流和汇率之间的同期关系。Evans 和 Lyons (2005c) 在估计其价格影响时考虑了订单流的异质性。根据最终用户的订单流数据,他们表明订单流为做市商提供了信息。里昂系列论文(1995,1996,1997,1998,2001)建立了订单流和信息传递的理论模型。根据市场的信息和定价,Lyons 和 Moore(2005)发现汇率价格受交易影响。

外汇市场的交易数量和交易量等盘中活动也是市场微观结构分析的重点。Admati 和 Pfleiderer (1988)、Brock 和 Kleidon (1992) 以及 Hsieh 和 Kleidon (1996) 提供了日内买卖价差和波动性模式的理论和经验背景。Baillie 和 Bollerslev (1990) 以及 Andersen 和 Bollerslev (1997, 1998) 是最早使用指示性报价检查汇率日内波动的一些研究。最后,Chaboud 等人。(2004 年),伯杰等人。(2005)和伊藤和桥本(2006,2008)使用最新的高频数据检查汇率的日内表现。

统计代写|风险建模代写Financial risk modeling代考|Data

即期外汇市场近年来发生了变化,现在绝大多数的即期外汇交易是通过 EBS 和 Reuters D-3000 等全球电子经纪系统执行的。这些电子经纪系统提供交易技术,并每天 24 小时连续显示报价和交易。15 年前,银行间市场的经纪人大多是人工交易,交易商之间的直接交易占据了现货市场的很大份额。今天的外汇市场非常不同。现在,每个在 EBS 和/或 Reuters D-3000 建立账户的金融机构都拥有一个特定的计算机屏幕,并且能够通过该屏幕通过输入和击中价格进行交易。EBS在美元/日元、欧元/美元、欧元/日元、欧元/瑞士法郎等货币中的绝对市场份额高于路透社D-3000,据说覆盖了90%以上的美元/日元和欧元/美元交易。在

相比之下,路透社在与英镑、加元和澳元相关的交易中占有相当大的市场份额。

EBS 数据集至少在两个重要方面比路透社的 FXFX 等经常使用的汇率数据指示性报价具有优势。首先,EBS 数据集中的报价是“确定的”,因为发布报价的银行承诺在报价受到“打击”时以这些报价进行交易。. 相比之下,FXFX屏幕的指示性报价是交易商输入的仅供参考的报价,没有任何交易承诺。在捕捉市场现实的全貌方面,指示性报价远不如实盘报价可靠。其次,在 EBS 数据集中可用的交易数据在 FXFX 屏幕上根本不可用。虽然没有透露确切的交易量,

作为促进有序市场的一部分,EBS 要求任何新建立关联的机构确保有足够数量的其他银行愿意向新加入者开设信贷额度。较小的或区域性银行可能有较少的贸易关系,因此没有那么多的信用关系。那么该机构的最佳买入价和卖出价可能与市场的最佳买入价和卖出价不同。较小的或区域性银行可能会发布更激进的价格(更高的出价或更低的要价),因为它们的信用关系相对较少,这意味着它们通常会看到较少的可交易价格。

统计代写|风险建模代写Financial risk modeling代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注