### 计算机代写|数据库作业代写SQL代考|Row-Store Databases

statistics-lab™ 为您的留学生涯保驾护航 在代写数据库SQL方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数据库SQL代写方面经验极为丰富，各种代写数据库SQL相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 计算机代写|数据库作业代写SQL代考|Row-Store Databases

Row-store databases-also called transactional databases-are designed to be efficient at processing transactions: INSERTs, UPDATEs, and DELETEs. Popular open source row-store databases include MySQL and Postgres. On the commercial side, Microsoft SQL Server, Oracle, and Teradata are widely used. Although they’re not really optimized for analysis, for a number of years row-store databases were the only option for companies building data warehouses. Through careful tuning and schema design, these databases can be used for analytics. They are also attractive due to the low cost of open source options and because they’re familiar to the database administrators who maintain them. Many organizations replicate their production database in the same technology as a first step toward building out data infrastructure. For all of these reasons, data analysts and data scientists are likely to work with data in a rowstore database at some point in their career.

We think of a table as rows and columns, but data has to be serialized for storage. A query searches a hard disk for the needed data. Hard disks are organized in a series of blocks of a fixed size. Scanning the hard disk takes both time and resources, so minimizing the amount of the disk that needs to be scanned to return query results is important. Row-store databases approach this problem by serializing data in a row. Figure 1-4 shows an example of row-wise data storage. When querying, the whole row is read into memory. This approach is fast when making row-wise updates, but it’s slower when making calculations across many rows if only a few columns are needed.

To reduce the width of tables, row-store databases are usually modeled in third normal form, which is a database design approach that seeks to store each piece of information only once, to avoid duplication and inconsistencies. This is efficient for transaction processing but often leads to a large number of tables in the database, each with only a few columns. To analyze such data, many joins may be required, and it can be difficult for nondevelopers to understand how all of the tables relate to each other and where a particular piece of data is stored. When doing analysis, the goal is usually denormalization, or getting all the data together in one place.

Tables typically have a primary key that enforces uniqueness-in other words, it prevents the database from creating more than one record for the same thing. Tables will often have an id column that is an auto-incrementing integer, where each new record gets the next integer after the last one inserted, or an alphanumeric value that is created by a primary key generator. There should also be a set of columns that together make the row unique; this combination of fields is called a composite key, or sometimes a business key. For example, in a table of people, the columns first_name, last_name, and birthdate together might make the row unique. Social_security_id would also be a unique identifier, in addition to the table’s person_id column.

## 计算机代写|数据库作业代写SQL代考|Column-Store Databases

Column-store databases took off in the early part of the 21 st century, though their theoretical history goes back as far as that of row-store databases. Column-store databases store the values of a column together, rather than storing the values of a row together. This design is optimized for queries that read many records but not necessarily all the columns. Popular column-store databases include Amazon Redshift, Snowflake, and Vertica.

Column-store databases are efficient at storing large volumes of data thanks to compression. Missing values and repeating values can be represented by very small marker values instead of the full value. For example, rather than storing “United Kingdom” thousands or millions of times, a column-store database will store a surrogate value that takes up very little storage space, along with a lookup that stores the full “United Kingdom” value. Column-store databases also compress data by taking advantage of repetitions of values in sorted data. For example, the database can store the fact that the marker value for “United Kingdom” is repeated 100 times, and this takes up even less space than storing that marker 100 times.

Column-store databases do not enforce primary keys and do not have indexes. Repeated values are not problematic, thanks to compression. As a result, schemas can be tailored for analysis queries, with all the data together in one place as opposed to being in multiple tables that need to be joined. Duplicate data can easily sneak in without primary keys, however, so understanding the source of the data and quality checking are important.

Updates and deletes are expensive in most column-store databases, since data for a single row is distributed rather than stored together. For very large tables, a writeonly policy may exist, so we also need to know something about how the data is generated in order to figure out which records to use. The data can also be slower to read, as it needs to be uncompressed before calculations are applied.

## 计算机代写|数据库作业代写SQL代考|Other Types of Data Infrastructure

Databases aren’t the only way data can be stored, and there is an increasing variety of options for storing data needed for analysis and powering applications. File storage systems, sometimes called data lakes, are probably the main alternative to database warehouses. NoSQL databases and search-based data stores are alternative data storage systems that offer low latency for application development and searching log files. Although not typically part of the analysis process, they are increasingly part of organizations’ data infrastructure, so I will introduce them briefly in this section as well. One interesting trend to point out is that although these newer types of infrastructure at first aimed to break away from the confines of SQL databases, many have ended up implementing some kind of SQL interface to query the data.

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。