### 计算机代写|机器学习代写machine learning代考|Transformations

statistics-lab™ 为您的留学生涯保驾护航 在代写机器学习machine learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写机器学习machine learning代写方面经验极为丰富，各种代写机器学习machine learning相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 计算机代写|机器学习代写machine learning代考|Linear Transformations

Figure $2.1$ presented an example for a $\mathbb{R} \rightarrow \mathbb{R}$ linear transformation. More generally, a $n \times n$ square matrix can be employed to perform a $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ linear transformation through multiplication. Figures 2.5a-c illustrate how a matrix $\mathbf{A}$ transforms a space $\mathbf{x}$ into another $\mathrm{x}^{\prime}$ using the matrix product operation $\mathrm{x}^{\prime}-\mathbf{A x}$. The deformation of the circle and the underlying grid (see (a)) show the effect of various transformations. Note that the terms on the main

diagonal of A control the transformations along the $x_{1}^{\prime}$ and $x_{2}^{\prime}$ axes, and the nondiagonal terms control the transformation dependency between both axes, (see, for example, figure 2.6).

The determinant of a square matrix A measures how much the transformation contracts or expands the space:

• $\operatorname{det}(\mathbf{A})=1$ : preserves the space/volume
• $\operatorname{det}(\mathbf{A})=0$ : collapses the space/volume along a subset of dimensions, for example, 2-D space $\rightarrow$ 1-D space (see figure $2.7$ )

In the examples presented in figure $2.5 \mathrm{a}-\mathrm{c}$, the determinant quantifies how much the area/volume is changed in the transformed space; for the circle, it corresponds to the change of area caused by the transformation. As shown in figure $2.5 \mathrm{a}$, if $\mathbf{A}=\mathbf{I}$, the transformation has no effect so $\operatorname{det}(\mathbf{A})=1$. For a square matrix $[\mathbf{A}]_{n \times n}$, $\operatorname{det}(\mathbf{A}): \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$.

## 计算机代写|机器学习代写machine learning代考|Eigen Decomposition

Linear tranaformations operate on several dimensions, such as in Lhe case presenled in figure $2.6$ where the tramsformalion inlruduces dependency between variables. Eigen decomposition enables finding a linear transformation that removes the dependency while preserving the area/volume. A square matrix $[\mathbf{A}]{n \times n}$ can be decomposed in eigenvectors $\left{\nu{1}, \cdots, \nu_{n}\right}$ and eigenvalues $\left{\lambda_{1}, \cdots, \lambda_{n}\right}$. In its matrix form.
$$\mathbf{A}=\mathbf{V} \operatorname{diag}(\boldsymbol{\lambda}) \mathbf{V}^{-1}$$
where
\begin{aligned} &\mathbf{V}=\left[\begin{array}{lll} \boldsymbol{\nu}{1} & \cdots & \boldsymbol{\nu}{n} \end{array}\right] \ &\boldsymbol{\lambda}=\left[\begin{array}{lll} \lambda_{1} & \cdots & \lambda_{n} \end{array}\right]^{\top} . \end{aligned}
Figure $2.6$ presents the eigen decomposition of the transformation $\mathbf{x}^{\prime}=\mathbf{A x}$. Eigenvectors $\nu_{1}$ and $\nu_{2}$ describe the new referential into which the transformation is independently applied to each axis. Eigenvalues $\lambda_{1}$ and $\lambda_{2}$ describe the transformation magnitude along each eigenvector.

A matrix is positive definite if all eigenvalues $>0$, and a matrix is positive semidefinite (PSD) if all eigenvalues $\geq 0$. The determinant of a matrix corresponds to the product of its eigenvalues. Therefore, in the case where one eigenvalue equals zero, it indicates that two or more dimensions are linearly dependent and have collapsed into a single one. The transformation matrix is then said to be singular. Figure $2.7$ presents an example of a nearly singular transformation. For a positive semidefinite matrix $\mathbf{A}$ and for any

vector $\mathbf{x}$, the following relation holds:
$$\mathbf{x}^{\top} \mathbf{A} \mathbf{x} \geq 0$$
This property is employed in $\S 3.3 .5$ to define the requirements for an admissible covariance matrix.
A more exhaustive review of linear algebra can be found in dedicated textbooks such as the one by Kreyszig. ${ }^{1}$

## 计算机代写|机器学习代写machine learning代考|Probability Theory

The interpretation of probability theory employed in this book follows Laplace’s view of “6ommon sense reduced to calculus.” It means that probabilities describe our state of knowledge rather than intrinsically aleatory phenomena. In practice, few phenomena are actually intrinsically unpredictable. Take, for example, a coin as displayed in figure 3.1. Whether a coin toss results in either heads or tails has nothing to do with an inherently aleatory process. The outcome appears unpredictable because of the lack of knowledge about the coin’s initial position, speed, and acceleration. If we could gather information about the coin’s initial kinematic conditions, the outcome would become predictable. Devices that can throw coins with repeatable initial kinematic conditions will lead to repeatable outcomes.

Figure $3.2$ presents another example where we consider the elastic modulus ${ }^{1} E$ at one specific location in a dam. Notwithstanding long-term effects such as creep, ${ }^{2}$ at any given location, $E$ does not vary with time: $E$ is a deterministic, yet unknown constant. Probability is employed here as a tool to describe our incomplete knowledge of that constant.
There are two types of uncertainty: aleatory and epistemic. aleatory uncertainty is characterized by its irreducibility: no information can either reduce or alter it. Alternately, epistemic uncertainty refers to a lack of knowledge that can be altered by new information. In an engineering context, aleatory uncertainties arise when we are concerned with future realizations that have yet to occur. Epistemic uncertainty applies to any other case dealing with deterministic, yet unknown quantities.

This book approaches machine learning using probability theory because in many practical engineering problems, the number of ubservaliuns availible is limuiled. frum a few te id few lhuusanal. In such a context, the amount of information available is typically

insufficient to eliminate epistemic uncertainties. When large data sets are available, probabilistic and deterministic methods may lead to indistinguishable results; the opposite occurs when little data is available. Therefore, the less we know about it, the stronger the aryument for approaching a problem using probability theory.
In this chapter, a review of set theory lays the foundation for probability theory, where the central part is the concept of random variables. Machine learning methods are built from an ensemble of functions organized in a clever way. Therefore, the last part of this chapter looks at what happens when random variables are introduced into deterministic functions.
For specific notions related to probability theory that are outside the scope of this chapter, the reader should refer to dedicated textbooks such as those by Box and Tiao; ${ }^{3}$ Ang and Tang. ${ }^{4}$

## 计算机代写|机器学习代写machine learning代考|Linear Transformations

A 的对角线控制沿 x1′ 和 x2′ 轴的变换，非对角项控制两个轴之间的变换依赖性，（例如，参见，图 2.6）。

• det⁡(A)=1 ：保留空间/体积
• det⁡(A)=0 ：沿维度子集折叠空间/体积，例如二维空间 → 一维空间（见图 2.7 ）

## 计算机代写|机器学习代写machine learning代考|Eigen Decomposition

$$\mathbf{A}=\mathbf{V} \operatorname{diag}(\boldsymbol{\lambda}) \mathbf{V}^{-1}$$
where
\begin{aligned} &\mathbf{ V}=\left[\begin{array}{lll} \boldsymbol{\nu}{1} & \cdots & \boldsymbol{\nu}{n} \end{array}\right] \ &\boldsymbol{\lambda}=\left[\begin{array}{lll} \lambda_{1} & \cdots & \lambda_{n} \end{array}\right]^{\​​top} 。 \end{aligned}

x⊤Ax≥0
§§3.3.5
1

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。