### 计算机代写|量子计算代写Quantum computing代考|General Notation for Operations on Transform Matrices

statistics-lab™ 为您的留学生涯保驾护航 在代写量子计算Quantum computing方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写量子计算Quantum computing代写方面经验极为丰富，各种代写量子计算Quantum computing相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 计算机代写|量子计算代写Quantum computing代考|General Notation for Operations on Transform Matrices

The following notation describes the operations on a transform matrix M over $\mathrm{GF}(\mathrm{K})[5,12]$ :

$M_{D} \rightarrow M_{o}^{p_{0}}-p_{K-1} \mid q_{0} \quad-q_{K-1}$,
where $\mathrm{M}{\mathrm{D}}$ is the Derived (Modified) Matrix, $\mathrm{M}{\mathrm{O}}$ is the Original Matrix. The symbols $\mathrm{p}{0}, \mathrm{p}{1}, \ldots, \mathrm{p}{\mathrm{K}-1}$ are row multiplication numbers $\in \mathrm{GF}(\mathrm{K}),{0,1, \ldots, \mathrm{K}-1}$ are indices referring to row ${0}$, row ${ }{1}, \ldots$, and row $\mathrm{K}{-1}$. The symbols $\mathrm{q}{0}, \mathrm{q}{1}, \ldots, \mathrm{q}{\mathrm{K}-1}$ are column multiplication numbers $\in \mathrm{GF}(\mathrm{K})$, and ${0,1, \ldots, \mathrm{K}-1}$ are indices referring to column $n{0}$, column $n_{1}, \ldots$, and column $n_{K-1}$. The operations performed utilizing the upper notation are done through the multiplication of all the elements of row $w_{i}$ of the matrix $M_{0}$ by $p_{i}$ and then multiplying each resulting element of (row $\mathrm{i}{\mathrm{i}} \mathrm{p}{\mathrm{i}}$ ) by $\mathrm{q}{\mathrm{j}}$, where $\mathrm{i}, \mathrm{j}=0,1, \ldots, \mathrm{k}-1$ ( i.e., $\prod{i, \nabla_{j}}\left(p_{i} \cdot q_{j} \cdot\right.$ row $\left.{i}\right)$ ). The mathematical interpretation of this notation, in terms of matrices, is as follows: if $\mathrm{D}$ is a diagonal matrix $\Rightarrow \mathrm{D}=$ Diag $(\alpha, \beta, \ldots, \gamma)$, then $\mathrm{M}{\mathrm{D}}=\mathrm{D} \cdot \mathrm{M}{\mathrm{o}} \Rightarrow \mathrm{M}{\mathrm{D}}{ }^{-1}=\left(\mathrm{D} \cdot \mathrm{M}{\mathrm{o}}\right)^{-1}=$ $\mathrm{M}{0}^{-1} \mathrm{D}^{-1}$. The following Eq. can be applied to obtain the functional expansions for any modified transform matrix:
$$f=M_{s}^{-1} M \vec{F},$$
where $\mathrm{M}$ is the transform matrix, and $\vec{F}$ is the truth vector of the function $\mathrm{f}$.

## 计算机代写|量子计算代写Quantum computing代考|Invariant Families of Multi-Valued Spectral Transforms

To introduce Theorems $2.1,2.2$, and $2.3$, the following definitions are presented (where $\mathrm{p}$ is a prime number and $\mathrm{k}$ is a natural number of value $k \geq 1$ ).

Definition 2.1. The transform matrix that is generated by multiplying the rows of $G F\left(p^{k}\right)$ Shannon matrix by the numbers ${\alpha$, $\beta, \ldots, \gamma} \in \mathrm{GF}\left(\mathrm{p}^{\mathrm{k}}\right.$ ) respectively is called $\alpha \beta \ldots \gamma$ IS (invariant Shannon) matrix.

Definition 2.2. The transform matrix that is generated by multiplying the rows of $G F\left(p^{k}\right.$ ) Davio of type $t$ (denoted by $D_{t}$ ) matrix by the numbers ${\alpha, \beta, \ldots, \gamma} \in G F\left(\mathrm{p}^{\mathrm{k}}\right)$ respectively is called $\alpha \beta \ldots \gamma \mathrm{ID}_{\mathrm{t}}$ (invariant Davio of type $\mathrm{t}$ ) matrix, where $\mathrm{t} \in \mathrm{GF}\left(\mathrm{p}^{\mathrm{k}}\right.$ ).

Definition 2.3. The transform matrix that is generated by multiplying the rows of $G F\left(p^{k}\right)$ flipped Shannon matrix by the numbers ${\alpha, \beta, \ldots, \gamma} \in \operatorname{GF}\left(p^{\mathrm{k}}\right)$ respectively is called $\alpha \beta \ldots \gamma$ IfS (invariant flipped Shannon) matrix, where $t \in G F\left(p^{k}\right)$.

## 计算机代写|量子计算代写Quantum computing代考|Summary

In this Chapt. we introduced a systematic method to create and classify new multiple-valued invariant non-singular spectral transforms based on multi-valued fundamental Shannon expansions and Davio expansions over an arbitrary radix of Galois field.

The new spectral transforms will have an application in the construction of regular layout in three-dimensions as will be shown in Chapt. 4. The new spectral transforms have an important property: their basis functions are exactly the same as the basis functions of the fundamental Shannon and Davio expansions but scaled by constants (i.e., $\hat{\alpha}, \hat{\beta}, \ldots, \hat{\gamma}$ ) . Moreover, these constants are not generated arbitrarily; they are the multiplicative inverses of the corresponding constants that scale the rows of the corresponding basic multi-valued Shannon, Davio, and flipped Shannon transform matrices, and can be directly calculated according to the axioms of the Galois field. Due to the previously mentioned property, these transforms possess fast inverses and therefore are suitable for many applications including the fast computation of spectral transforms. All results in this Chapt. can be extended to an arbitrary $\mathrm{GF}\left(\mathrm{p}^{\mathrm{k}}\right)$ fields, where $p$ is a prime number and $k$ is a natural number $k \geq 1$. Also, although the new expansions that are developed in this Chapt. are for Galois field and 1-RPL, similar and analogous developments can be done for other complete algebraic structures and spectral transforms with different sorts of literals and operations.

Lattice structures based on the new ternary invariant Shannon and Davio expansions will be synthesized in Chapt. 4. The new 3-D lattice structures will be further extended to include reversible lattice structures in Chapt. 6, and their corresponding quantum circuits will be introduced in Chapt. 10. The new primitive in Fig. 2.4b will be extended to reversible logic in Chapt. 5 and will be used in Chapt. 6 to build reversible binary Shannon lattice structures. Also, the new families of multiple-valued invariant Shannon and Davio expansions that were introduced in this Chapt. will be fully generalized to include the reversible counterparts of such new expansions in Chapt. 5 , from which new reversible primitives and structures will be constructed in the following Chapts.

F=米s−1米F→,

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。