金融代写|利率建模代写Interest Rate Modeling代考|MATH5985

statistics-lab™ 为您的留学生涯保驾护航 在代写利率建模Interest Rate Modeling方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写利率建模Interest Rate Modeling代写方面经验极为丰富，各种代写利率建模Interest Rate Modeling相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• Advanced Probability Theory 高等概率论
• Advanced Mathematical Statistics 高等数理统计学
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

金融代写|利率建模代写Interest Rate Modeling代考|Heath-Jarrow-Morton Framework

We introduced a bond market $\mathcal{B}$ in Chapter 3 that did not admit a term structure of interest rates. If, instead, we assume a term structure in the bond market, it becomes possible to relate the bond price to the interest rate. We represent the dynamics of bond price by a stochastic process and use this to specify the corresponding interest rates. Such a system is referred to as a term structure model of interest rates (or put simply, an interest rate model).
A model specified by the dynamics of a short rate is referred to as a short rate model. A model specified by the dynamics of forward rates is referred to as a forward rate model. For management of interest rate risk, it is better to suppose various types of changes in the yield curve, and specifically to suppose changes in the forward rates. Because of this, the forward rate model is more useful in risk management than the short rate model is.

This section briefly introduces the HJM model, which is the most general forward rate model. For additional details, readers are recommended to consult Cairns (2004), Munk (2011), or Shreve (2004), among others. For details on calibration, readers are recommended to consult Wu (2009).
Forward rate process
Let $\left(\Omega, \mathcal{F}{t \in[0, \tau]}, \mathbf{P}\right)$ be a filtered probability space, where $\mathcal{F}{t \in[0, \tau]}$ is the augmented filtration and $\mathbf{P}$ denotes the real-world measure. The instantaneous forward rate with maturity $T$ observed at time $t$ is denoted by $f(t, T)$. When the usage is unambiguous, $f(t, T)$ will be called the forward rate. Typically $f(0, T)$ represents an initial forward rate.

We assume that the dynamics of $f(t, T)$ on $\left(\Omega, \mathcal{F}{t \in[0, \tau]}, \mathbf{P}\right)$ is represented by $$d f(t, T)=\alpha(t, T) d t+\sigma(t, T) d W{t},$$
where $W_{t}=\left(W_{t}^{1}, \cdots, W_{t}^{d}\right)^{T}$ is a $d$-dimensional P-Brownian motion, and $\alpha(t, T)$ and $\sigma(t, T)$ are predictable processes satisfying some technical conditions. Here, $\sigma(t, T)=\left(\sigma^{1}(t, T), \cdots, \sigma^{d}(t, T)\right)^{T}$ is a $d$-dimensional process. The second term, $\sigma(t, T) d W_{t}$ denotes the inner product of $\sigma(t, T)$ and $d W_{t}$ in $\mathbf{R}^{d}$, specifically
$$\sigma(t, T) d W_{t}=\sum_{l=1}^{d} \sigma^{l}(t, T) d W_{t}^{l} .$$

金融代写|利率建模代写Interest Rate Modeling代考|Arbitrage Pricing and Market Price of Risk

This section briefly studies some fundamental subjects in the HJM model, specifically, forward rate process, arbitrage pricing, the market price of risk, and state price deflator.
Forward rate process
Here let us represent the forward rate process under the risk-neutral measure Q. Differentiating equation (4.9) with respect to $T$, we have
$$-\alpha(s, T)-\sigma(s, T) \int_{s}^{T} \sigma(s, u) d u=\frac{\partial b(s, T)}{\partial T} .$$
From equations (4.10) and (4.12), it follows that
\begin{aligned} -\alpha(s, T)-\sigma(s, T) \int_{s}^{T} \sigma(s, u) d u &=\frac{\partial v(s, T)}{\partial T} \varphi_{t} \ &=-\sigma(s, T) \varphi_{t} \end{aligned}
Substituting the above into equation (4.1), we obtain
$$d f(t, T)={-\sigma(t, T) v(t, T)+\sigma(t, T) \varphi(t)} d t+\sigma(t, T) d W_{t}$$
Recall the Q-Brownian motion $Z_{t}=\int_{0}^{t} \varphi_{s} d s+W_{t}$. Substituting this into the above, we have
$$d f(t, T)=-\sigma(t, T) v(t, T) d t+\sigma(t, T) d Z_{t}$$
where the drift under $\mathbf{Q}$ is completely determined by the volatility $\sigma(t, T)$. This form is the well-known forward rate process in the HJM model. For pricing interest rate derivatives, the dynamics of the forward rates are typically simulated by equation (4.18), and the bond pricing is performed by using this form. This method is essentially the same as used with short rate models.

金融代写|利率建模代写Interest Rate Modeling代考|Volatility and Principal Components

This section introduces a method for constructing the volatility in the H.JM model. There are two major approaches to do so. One is a market approach; the other is a historical approach.

In the market approach, the volatility is estimated such that the model implies option prices consistent with their market prices. In the historical approach, the volatility is constructed to represent a historical dynamics of an interest rate, for example, the short rate or the forward rate. Experimentally, these two approaches result in quite different volatility structures.

When we calibrate the model for derivatives pricing, the market approach should be employed. In this, it is understood that historical volatility cannot explain market prices because the option prices are determined mostly by traders’ forecasts for the future market rather than by historical volatility. Therefore, adopting a historical approach will result in a model that misprices major derivatives. Such a model is not valid for derivatives trading.

However, when we intend to calibrate a model for interest-risk-management, the historical approach is recommended, rather than the market approach. In the historical approach, principal component analysis (PCA) is a standard technique for reducing the dimensionality of the model. PCA will be repeatedly used in this book, and we introduce the construction of volatility by applying PCA. The fundamentals of PCA and the relevant linear algebra are given in Appendix B.

金融代写|利率建模代写Interest Rate Modeling代考|Heath-Jarrow-Morton Framework

Let(Ω,F吨∈[0,τ],磷)是一个过滤的概率空间，其中F吨∈[0,τ]是增强过滤和磷表示真实世界的度量。到期的瞬时远期利率吨当时观察到吨表示为F(吨,吨). 用法明确时，F(吨,吨)将被称为远期利率。通常F(0,吨)表示初始远期利率。

dF(吨,吨)=一个(吨,吨)d吨+σ(吨,吨)d在吨,

σ(吨,吨)d在吨=∑l=1dσl(吨,吨)d在吨l.

金融代写|利率建模代写Interest Rate Modeling代考|Arbitrage Pricing and Market Price of Risk

−一个(s,吨)−σ(s,吨)∫s吨σ(s,在)d在=∂b(s,吨)∂吨.

−一个(s,吨)−σ(s,吨)∫s吨σ(s,在)d在=∂在(s,吨)∂吨披吨 =−σ(s,吨)披吨

dF(吨,吨)=−σ(吨,吨)在(吨,吨)+σ(吨,吨)披(吨)d吨+σ(吨,吨)d在吨

dF(吨,吨)=−σ(吨,吨)在(吨,吨)d吨+σ(吨,吨)d从吨

有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。