金融代写|量化风险管理代写Quantitative Risk Management代考|Operational Risk

如果你也在 怎样代写量化风险管理Quantitative Risk Management这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

项目管理中的定量风险管理是将风险对项目的影响转换为数字的过程。这种数字信息经常被用来确定项目的成本和时间应急措施。

statistics-lab™ 为您的留学生涯保驾护航 在代写量化风险管理Quantitative Risk Management方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写量化风险管理Quantitative Risk Management代写方面经验极为丰富,各种代写量化风险管理Quantitative Risk Management相关的作业也就用不着说。

我们提供的量化风险管理Quantitative Risk Management及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
金融代写|量化风险管理代写Quantitative Risk Management代考|Operational Risk

金融代写|量化风险管理代写Quantitative Risk Management代考|Standardised Approach

The standardised approach represents a further refinement along the evolutionary spectrum of approaches for operational risk capital. The capital allocation is not anymore a basic percentage of the overall gross income; banks’ activities are divided into a number of standardised business units and business lines. Thus, the standardised approach is more capable of reflecting the different risk profiles across banks as reflected by their broad business activities. The proposed business units and business lines of the standardised approach mirror those developed by an industry initiative to collect internal loss data in a consistent manner. To each business line corresponds a specific capital allocation computed on a particular indicator. Table $2.1$ presents these ones.

The capital charge (CA) is now for each business line a portion of the chosen indicator, formally,
$$
C A_{i}=\theta_{i} \times \text { Indicator, }
$$
where, $\theta_{i}, i=1, \ldots, 8$, is different percentage for each business line.
The main objective of this approach is to lay the foundation of internal databases, and therefore enable the evolution to a more sophisticated approach.

金融代写|量化风险管理代写Quantitative Risk Management代考|The Advanced Measurement Approach

The advanced measurement approach (AMA) is a set of operational risk measurement techniques proposed under Basel II capital adequacy rules for banking institutions. Now, banks are allowed to develop their own empirical model to quantify the required capital to face operational risk. The use of this approach is subject to approval from banks’ local regulators. Besides, according to section 664 of the original Basel Accords, in order to approve the AMA model, a bank must at least satisfy the following requirements:

  • Its board of directors and senior management, as appropriate, should be actively involved in the oversight of the operational risk management framework;
  • It requires an operational risk management system that is conceptually sound and is implemented with integrity; and
  • It must have sufficient resources in the use of the approach in the major business lines as well as the control and audit areas.
    The AMA requires using the following items:
  1. Internal data
  2. External data
  3. Scenario analysis
  4. Qualitative indicators, the so-called business environment and internal control factors (BEICFs).

The following subsections provide further explanations on the previous items.
The advanced measurement approaches (AMA) is one of the three possible operational risk methods that can be used under Basel II by a bank or other financial institution. The other two are the basic indicator approach and the standardised approach. The methods increase in sophistication and risk sensitivity with AMA being the most advanced of the three. Under AMA banks are entitled to develop an internal model to evaluate the capital charge pertaining to operational risk. Once again, banks have to follow a strict governance process before being allowed to use this approach. Once a bank has been approved to adopt AMA, it cannot revert to a simpler approach without supervisory approval, though some banks have been reverted to standardised such as Lloyds Banking group. Furthermore, the arrival of the standardised measurement approach has replaced the AMA for Pillar one (Basel III), while AMA standards have been pushed down into Pillar II.

Also, according to section 664 of original Basel Accord, in order to qualify for use of the AMA a bank must satisfy its supervisor that, at a minimum:

  • Its board of directors and senior management, as appropriate, are actively involved in the oversight of the operational risk management framework;
  • It has an operational risk management system that is conceptually sound and is implemented with integrity; and
  • It has sufficient resources in the use of the approach in the major business lines as well as the control and audit areas.

金融代写|量化风险管理代写Quantitative Risk Management代考|Standardised Measurement Approach

As stated in BCBS (2016b) and BCBS (2017b) the three approaches presented before are supposed to be replaced by a new Standardised Approach (usually referred to as SMA or new SA). This SMA or new SA combines the business indicator component (BIC), a simple financial statement proxy of operational risk exposure, with bank specific operational loss data referred to as the internal loss multiplier (ILM). Since the October 2014 consultation, the structure of the BI has been revised to avoid penalising certain business models, such as those based on the distribution of products bought from third parties, and those based on high interest margins. Adjustments have also been made to address issues related to the treatment of financial and operating leases 1 .

Before obtaining the BIC, a business indicator (BI), made up of almost the same profit and loss ( $\mathrm{P} \& \mathrm{~L}$ ) items that are found in the composition of gross income (GI), is calculated. The main difference relates to how the items are combined. The BI uses positive values of its components, thereby avoiding counterintuitive

negative contributions from some of the bank’s businesses to the capital charge (e.g. negative P\&L on the trading book), which is possible under the GI. In addition, the BI includes income statement items related to activities that produce operational risk that are omitted (e.g. P\&L on the banking book) or netted (e.g. fee expenses, other operating expenses) in the GI. In particular, changing the impact of other operating expenses on capital requirements from negative (in GI) to positive (in the BI) is necessary to improve the coherence of the BI as a proxy indicator for operational loss exposure, as other operating expenses typically include operational losses, and thus an increase in other operating expenses should not result in a decrease in operational risk capital requirements. Three components, that are calculated from P\&L positions as well as balance sheet positions, are added up to give the Business Indicator value, i.e. Interest, Lease and Dividend Component (ILDC), Services Component (SC) and Financial Component (FC). Therefore, $B I=I L D C+S C+F C$ where,
$I L D C=\min [\mid$ Interest Income -Interest Expense|; 2.25\%*Interest Eaming Assets]+Dividend Income,
(2.3.3)
$S C=\max [$ Other Operating Income; Other Operating Expense $]+\max [$ Fee Iñome; Fee Expense]
$(2.3 .4)$
$F C=\mid$ Net $\mathrm{P} \& \mathrm{~L}$ Trading Book $|+|$ Net $\mathrm{P} \& \mathrm{~L}$ Banking Book $\mid .$
Then,

  1. if the $B I \leq 1$ billion then the $\mathrm{BIC}$ is equal to $B I * 12 \%$,
  2. if the $1<B I \leq 30$ billion then $\mathrm{BIC}$ is equal to $B I * 15 \%$,
  3. if the $B I \geq 30$ billion then $\mathrm{BIC}$ is equal to $B I * 18 \%$.
    A bank’s internal operational risk loss experience affects the calculation of operational risk capital through the Internal Loss Multiplier (ILM). The ILM is defined as:
    $$
    I L M=\ln \left(\exp (1)-1+\left(\frac{L C}{B I C}\right)^{0.8}\right)
    $$
    where the Loss Component (LC) is equal to 15 times average annual operational risk losses incurred over the previous 10 years. The ILM is equal to one when the loss and business indicator components are equal. When the LC is greater than the BIC, the ILM is greater than one. That is, a bank with losses that are high relative to its BIC is required to hold higher capital due to the incorporation of internal losses into the calculation methodology. Conversely, when the LC is lower than the BIC, the ILM is less than one. That is, a bank with losses that are low relative to its BIC is required to hold lower capital due to the incorporation of internal losses into the calculation methodology.
金融代写|量化风险管理代写Quantitative Risk Management代考|Operational Risk

量化风险管理代考

金融代写|量化风险管理代写Quantitative Risk Management代考|Standardised Approach

标准化方法代表了操作风险资本方法演进范围的进一步细化。资本分配不再是总收入的基本百分比;银行的活动分为多个标准化的业务单元和业务线。因此,标准化方法更能反映银行间广泛的业务活动所反映的不同风险状况。标准化方法的拟议业务单位和业务线反映了行业倡议开发的以一致方式收集内部损失数据的业务单位和业务线。每个业务线对应于根据特定指标计算的特定资本分配。桌子2.1介绍这些。

资本费用 (CA) 现在是每个业务线所选指标的一部分,正式地,

C一个一世=θ一世× 指标, 
在哪里,θ一世,一世=1,…,8, 是每个业务线的不同百分比。
这种方法的主要目标是为内部数据库奠定基础,因此能够向更复杂的方法演进。

金融代写|量化风险管理代写Quantitative Risk Management代考|The Advanced Measurement Approach

高级计量法(AMA)是巴塞尔协议II资本充足率规则为银行机构提出的一套操作风险计量技术。现在,银行可以开发自己的经验模型来量化面临操作风险所需的资本。使用这种方法需要获得银行当地监管机构的批准。此外,根据原始巴塞尔协议第 664 条,为批准 AMA 模式,银行必须至少满足以下要求:

  • 其董事会和高级管理层应酌情积极参与对操作风险管理框架的监督;
  • 它需要一个概念健全、实施完整的操作风险管理系统;和
  • 它必须有足够的资源在主要业务线以及控制和审计领域使用该方法。
    AMA 需要使用以下项目:
  1. 内部数据
  2. 外部数据
  3. 场景分析
  4. 定性指标,即所谓的营商环境和内部控制因素(BEICFs)。

以下小节对前面的项目提供了进一步的解释。
高级计量方法 (AMA) 是银行或其他金融机构在巴塞尔协议 II 下可以使用的三种可能的操作风险方法之一。另外两种是基本指标法和标准化法。这些方法提高了复杂性和风险敏感性,其中 AMA 是三者中最先进的。根据 AMA,银行有权开发一个内部模型来评估与操作风险相关的资本要求。再一次,银行在被允许使用这种方法之前必须遵循严格的治理流程。一旦银行被批准采用 AMA,它就不能在没有监管批准的情况下恢复到更简单的方法,尽管一些银行已经恢复到标准化,例如劳埃德银行集团。此外,

此外,根据原始巴塞尔协议第 664 条,为了获得使用 AMA 的资格,银行必须至少满足其监管者的要求:

  • 其董事会和高级管理层酌情积极参与对操作风险管理框架的监督;
  • 具有概念健全、执行完整的操作风险管理体系;和
  • 它有足够的资源在主要业务线以及控制和审计领域使用该方法。

金融代写|量化风险管理代写Quantitative Risk Management代考|Standardised Measurement Approach

如 BCBS (2016b) 和 BCBS (2017b) 所述,之前提出的三种方法应该被新的标准化方法(通常称为 SMA 或新 SA)所取代。此 SMA 或新 SA 结合了业务指标组件 (BIC),即操作风险敞口的简单财务报表代理,以及称为内部损失乘数 (ILM) 的银行特定操作损失数据。自 2014 年 10 月咨询以来,BI 的结构已进行了修订,以避免惩罚某些商业模式,例如基于从第三方购买的产品的分销以及基于高息差的商业模式。还进行了调整,以解决与处理财务和经营租赁 1 相关的问题。

在获得 BIC 之前,业务指标 (BI) 由几乎相同的损益 (磷& 大号) 计算总收入 (GI) 组成中的项目。主要区别在于项目的组合方式。BI 使用其组件的正值,从而避免违反直觉

银行的一些业务对资本费用的负贡献(例如交易账簿上的负损益),这在地理标志下是可能的。此外,BI 包括与产生操作风险的活动相关的损益表项目,这些项目在 GI 中被忽略(例如银行账簿上的损益)或净额(例如费用支出、其他运营支出)。特别是,将其他运营费用对资本要求的影响从负(在 GI)变为正(在 BI)对于提高 BI 作为运营损失风险的代理指标的一致性是必要的,因为其他运营费用通常包括运营损失,因此其他运营费用的增加不应导致运营风险资本要求的降低。从 P\& 计算的三个分量 L 头寸和资产负债表头寸相加得出业务指标值,即利息、租赁和股息部分 (ILDC)、服务部分 (SC) 和财务部分 (FC)。所以,乙我=我大号DC+小号C+FC在哪里,
我大号DC=分钟[∣利息收入-利息费用|;2.25\%*利息收入资产]+股息收入,
(2.3.3)
小号C=最大限度[其他营业收入;其他营业费用]+最大限度[费伊诺姆;费用支出]
(2.3.4)
FC=∣网磷& 大号交易簿|+|网磷& 大号银行账簿∣.
然后,

  1. 如果乙我≤1亿然后乙我C等于乙我∗12%,
  2. 如果1<乙我≤30那时十亿乙我C等于乙我∗15%,
  3. 如果乙我≥30那时十亿乙我C等于乙我∗18%.
    银行的内部操作风险损失经验通过内部损失乘数 (ILM) 影响操作风险资本的计算。ILM 定义为:
    我大号米=ln⁡(经验⁡(1)−1+(大号C乙我C)0.8)
    其中损失成分 (LC) 等于过去 10 年平均年度运营风险损失的 15 倍。当损失和业务指标分量相等时,ILM 等于 1。当 LC 大于 BIC 时,ILM 大于 1。也就是说,由于将内部损失纳入计算方法,损失相对于其 BIC 较高的银行需要持有较高的资本。相反,当 LC 低于 BIC 时,ILM 小于 1。也就是说,由于将内部损失纳入计算方法,损失相对于其 BIC 较低的银行需要持有较低的资本。
金融代写|量化风险管理代写Quantitative Risk Management代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。