金融代写|金融工程作业代写Financial Engineering代考|Greeks

如果你也在 怎样代写金融工程Financial Engineering这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

statistics-lab™ 为您的留学生涯保驾护航 在代写金融工程Financial Engineering方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写金融工程Financial Engineering代写方面经验极为丰富,各种代写金融工程Financial Engineering相关的作业也就用不着说。

我们提供的金融工程Financial Engineering及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
OptionSmile | Our Approach – Overview
金融代写|金融工程作业代写Financial Engineering代考|Greeks

金融代写|金融工程作业代写Financial Engineering代考|Greeks

It is often important to measure the sensitivity of the option value with respect to the variables $t, s, r$, and $\sigma$. The so-called greeks are measures of sensitivity based on partial derivatives with respect to those parameters. Explicit formulas for greeks are known only in few cases, in particular the European call option [Wilmott, 2006]. In general, since there is no explicit expression for the option value, the greeks must be approximated. This will be done in Section 1.7. Here are the main definitions and interpretations for these useful parameters.

  • The sensitivity of the option value with respect to the underlying asset price, called delta, is defined by
    $$
    \Delta=\frac{\partial C}{\partial s}
    $$
    The delta of an option is quite useful in hedging since it corresponds to the number of shares needed to create a risk-free portfolio replicating the value of the option at maturity; see Appendix 1.A.
  • The sensitivity of the option value with respect to time, called theta, is defined by
    $$
    \Theta=\frac{\partial C}{\partial t} .
    $$
    Note that $-\Theta$, evaluated at $\tau=T-t$, yields the sensitivity with respect to the time to maturity $\tau$.
  • The sensitivity of the option value with respect to the interest rate $r$, called $r o$, is defined by
    $$
    \rho=\frac{\partial C}{\partial r}
    $$

Black-Scholes Model
15

  • The sensitivity of the option value with respect to the volatility, called vega, is defined by
    $$
    \mathcal{V}=\frac{\partial C}{\partial \sigma}
    $$
    As shown next in Section 1.6.3, the vega is also important in determining the error on the option price due to the estimation of the volatility.
  • A measure of convexity, the second order derivative of the option value with respect to the underlying asset prices, called gamma, is defined by
    $$
    \Gamma=\frac{\partial^{2} C}{\partial s^{2}}
    $$
    $\Gamma$ is useful in some approximations.

金融代写|金融工程作业代写Financial Engineering代考|Greeks for a European Call Option

Using the Black-Scholes formula (1.4), it is easy to check that

  • $\Delta=\frac{\partial C}{\partial s}=\mathcal{N}\left(d_{1}\right)>0 .$
  • $\Theta=\frac{\partial C}{\partial t}=-\frac{\sigma s}{2 \sqrt{T-t}} \frac{e^{-d_{1}^{2} / 2}}{\sqrt{2 \pi}}-K r e^{-r(T-t)} \mathcal{N}\left(d_{2}\right)<0 .$ $\rho=\frac{\partial C}{\partial r}=K(T-t) e^{-r(T-t)} \mathcal{N}\left(d_{2}\right)>0 .$
  • $\mathcal{V}=\frac{\partial C}{\partial \sigma}=s \sqrt{T-t} \frac{e^{-d_{1}^{2} / 2}}{\sqrt{2 \pi}}>0 .$
    Since the vega is positive, it means that the value of the option is an increasing function of the volatility. This property is essential in determining the so-called implied volatility.
  • $\Gamma=\frac{\partial^{2} C}{\partial s^{2}}=\frac{1}{s \sigma \sqrt{T-t}} \frac{e^{-d_{1}^{2} / 2}}{\sqrt{2 \pi}}>0 .$
    Since the gamma is positive, it means that the value of the option is a convex function of the underlying asset value.

Remark 1.6.1 For continuously paid dividends at rate $\delta$, using formula $(1.10)$, it is easy to check that $\Delta_{\delta}(t, s)=e^{-\delta \tau} \Delta_{0}\left(t, s e^{-\delta \tau}\right) .$ Also $\Gamma_{\delta}(t, s)=$ $e^{-2 \delta \tau} \Gamma_{0}\left(t, s e^{-\delta \tau}\right)$. Next, $\Theta_{\delta}(t, s)=\Theta_{0}\left(t, s e^{-\delta \tau}\right)+s \Delta_{\delta}(t, s)$. Finally, $\rho_{\delta}(t, s)=\rho_{0}\left(t, s e^{-\delta \tau}\right)$ and $\mathcal{V}{\delta}(t, s)=\mathcal{V}{0}\left(t, s e^{-\delta \tau}\right)$.

金融代写|金融工程作业代写Financial Engineering代考|Implied Distribution

One might ask why there is no sensitivity parameter corresponding to the partial derivative with respect to the strike price. In fact, there is one and it is related to the implied distribution [Breeden and Litzenberger, 1978]. Assuming that the value of a European call option is given by the expectation formula (1.8), and using the properties of expectations, namely (A.2), we obtain
$$
C(t, s)=E_{Q}[\max {\tilde{S}(T)-K, 0} \mid \tilde{S}(t)=s]=\int_{K}^{\infty} Q{\tilde{S}(T)>y} d y
$$
where $Q$ denotes the equivalent martingale measure. As a result,
$$
\frac{\partial C}{\partial K}=-Q{\bar{S}(T)>K}=\tilde{F}(K)-1
$$
where $\tilde{F}$ is the distribution function of $\bar{S}(T)$ given $\bar{S}(t)=s$, under the equivalent martingale measure $Q$. As a result $\frac{\partial C}{\partial K}$ is non-decreasing and it follows that $\frac{\partial^{2} C}{\partial K^{2}}=\tilde{f}(K) \geq 0$, where $\tilde{f}$ is the associated density, provided it exists. It also shows that the value of a call option is always a convex function of the strike. Note that in the case of the Black-Scholes model, the implied distribution is the log-normal, since $\ln {\tilde{S}(T)}$ has a Gaussian distribution with mean $\ln (s)+\left(r-\frac{\sigma^{2}}{2}\right) \tau$ and variance $\sigma^{2} \tau$, under the equivalent martingale measure. Since (1.18) is assumed to be always valid, not only for the BlackScholes model, the implied distribution function can be approximated from the market prices of the calls if there are enough strike prices available. See, e.g., Ait-Sahalia and Lo [1998].

As an example, consider the values of call options on Apple, on January $14^{\text {th }}, 2011$, with a 24-day maturity. The first data are shown in Table $1.2$; the complete data set is in the MATLAB structure AppleCalls containing the strikes and call market values for four different maturities. The graph is displayed in Figure 1.1. One can notice that the value of the call for a strike $K=\$ 210$ seems too low, while the call values for strikes $K=\$ 160$ and $K=\$ 170$ are too close, destroying the (theoretical) convexity of the curve.
TABLE 1.2: Some market values of call options on Apple with a 24-day maturity, on January $14^{\text {th }}, 2011$.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Strike & $160.00$ & $170.00$ & $200.00$ & $210.00$ & $220.00$ & $240.00$ \
\hline Call & $169.62$ & $169.60$ & $147.85$ & $112.25$ & $125.70$ & $108.00$ \
\hline
\end{tabular}

Better than expected: the influence of option expectations during  decision-making | Proceedings of the Royal Society B: Biological Sciences
金融代写|金融工程作业代写Financial Engineering代考|Greeks

金融工程代写

金融代写|金融工程作业代写Financial Engineering代考|Greeks

衡量期权价值对变量的敏感性通常很重要吨,s,r, 和σ. 所谓的 greeks 是基于对这些参数的偏导数的灵敏度度量。希腊人的显式公式仅在少数情况下为人所知,尤其是欧洲看涨期权 [Wilmott, 2006]。一般来说,由于选项值没有明确的表达,希腊语必须是近似的。这将在第 1.7 节中完成。以下是这些有用参数的主要定义和解释。

  • 期权价值相对于标的资产价格的敏感性,称为 delta,定义为
    Δ=∂C∂s
    期权的 delta 在对冲中非常有用,因为它对应于创建无风险投资组合所需的股票数量,该投资组合在到期时复制期权的价值;见附录 1.A。
  • 期权价值对时间的敏感性,称为 theta,定义为
    θ=∂C∂吨.
    注意−θ, 评价为τ=吨−吨, 产生关于到期时间的敏感性τ.
  • 期权价值对利率的敏感性r, 称为r这, 定义为
    ρ=∂C∂r

布莱克-斯科尔斯
15型

  • 期权价值对波动率的敏感性称为 vega,定义为
    在=∂C∂σ
    如下 1.6.3 节所示,由于波动率的估计,vega 在确定期权价格的误差方面也很重要。
  • 凸度的度量,即期权价值相对于标的资产价格的二阶导数,称为 gamma,定义为
    Γ=∂2C∂s2
    Γ在某些近似值中很有用。

金融代写|金融工程作业代写Financial Engineering代考|Greeks for a European Call Option

使用 Black-Scholes 公式 (1.4),很容易检查

  • Δ=∂C∂s=ñ(d1)>0.
  • θ=∂C∂吨=−σs2吨−吨和−d12/22圆周率−ķr和−r(吨−吨)ñ(d2)<0. ρ=∂C∂r=ķ(吨−吨)和−r(吨−吨)ñ(d2)>0.
  • 在=∂C∂σ=s吨−吨和−d12/22圆周率>0.
    由于 vega 是正数,这意味着期权的价值是波动率的增函数。该属性对于确定所谓的隐含波动率至关重要。
  • Γ=∂2C∂s2=1sσ吨−吨和−d12/22圆周率>0.
    由于 gamma 为正,意味着期权的价值是标的资产价值的凸函数。

备注 1.6.1 按利率连续派发股息d, 使用公式(1.10), 很容易检查Δd(吨,s)=和−dτΔ0(吨,s和−dτ).还Γd(吨,s)= 和−2dτΓ0(吨,s和−dτ). 下一个,θd(吨,s)=θ0(吨,s和−dτ)+sΔd(吨,s). 最后,ρd(吨,s)=ρ0(吨,s和−dτ)和在d(吨,s)=在0(吨,s和−dτ).

金融代写|金融工程作业代写Financial Engineering代考|Implied Distribution

有人可能会问,为什么没有对应于执行价格的偏导数的敏感性参数。事实上,有一个与隐含分布有关[Breeden and Litzenberger, 1978]。假设欧式看涨期权的价值由期望公式(1.8)给出,并利用期望的性质,即(A.2),我们得到
C(吨,s)=和问[最大限度小号~(吨)−ķ,0∣小号~(吨)=s]=∫ķ∞问小号~(吨)>是d是
在哪里问表示等价鞅测度。因此,
∂C∂ķ=−问小号¯(吨)>ķ=F~(ķ)−1
在哪里F~是分布函数小号¯(吨)给定小号¯(吨)=s, 在等价鞅测度下问. 因此∂C∂ķ是非减少的,因此∂2C∂ķ2=F~(ķ)≥0, 在哪里F~是相关密度,前提是它存在。它还表明,看涨期权的价值始终是行使价的凸函数。请注意,在 Black-Scholes 模型的情况下,隐含分布是对数正态分布,因为ln⁡小号~(吨)具有均值的高斯分布ln⁡(s)+(r−σ22)τ和方差σ2τ,在等价鞅测度下。由于假设 (1.18) 始终有效,不仅对于 BlackScholes 模型,如果有足够的执行价格可用,隐含分布函数可以从看涨期权的市场价格近似。例如,参见 Ait-Sahalia 和 Lo [1998]。

例如,考虑 Apple 的看涨期权价值,1 月14th ,2011,到期日为 24 天。第一个数据如表所示1.2; 完整的数据集位于 MATLAB 结构 AppleCalls 中,其中包含四种不同期限的行使价和看涨期权的市场价值。图表如图 1.1 所示。可以注意到呼吁罢工的价值ķ=$210似乎太低,而罢工的呼吁价值ķ=$160和ķ=$170太接近了,破坏了曲线的(理论)凸度。
表 1.2:苹果 24 天到期看涨期权的部分市场价值,1 月14th ,2011.
\begin{tabular}{|c|c|c|c|c|c|c|} \hline 罢工 & $160.00$ & $170.00$ & $200.00$ & $210

金融代写|金融工程作业代写Financial Engineering代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注