如果你也在 怎样代写金融计量经济学Financial Econometrics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。
金融计量学是将统计方法应用于金融市场数据。金融计量学是金融经济学的一个分支,在经济学领域。研究领域包括资本市场、金融机构、公司财务和公司治理。
statistics-lab™ 为您的留学生涯保驾护航 在代写金融计量经济学Financial Econometrics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写金融计量经济学Financial Econometrics代写方面经验极为丰富,各种代写金融计量经济学Financial Econometrics相关的作业也就用不着说。
我们提供的金融计量经济学Financial Econometrics及其相关学科的代写,服务范围广, 其中包括但不限于:
- Statistical Inference 统计推断
- Statistical Computing 统计计算
- Advanced Probability Theory 高等概率论
- Advanced Mathematical Statistics 高等数理统计学
- (Generalized) Linear Models 广义线性模型
- Statistical Machine Learning 统计机器学习
- Longitudinal Data Analysis 纵向数据分析
- Foundations of Data Science 数据科学基础
金融代写|金融计量经济学Financial Econometrics代考|ARIMA
An important aspect of the time series is that time series data is often used for the forecasting. Based on the information of the past and present states of the variable, the future states of the variable are forecasted. The ARIMA models are introduced by the Box-Jenkins in the year 1976. The ARIMA stands for the “Auto Regressive Integrated Moving Average”. Thereafter, ARIMA models are widely used in finance for forecasting the stationary time series. The ARIMA models are useful for modelling both the univariate and multivariate time series. Commonly, time series is generated using the following: AR (Autoregressive) or MA (Moving average) or both (ARMA) or ARIMA processes.
AR (Autoregressive) Process
The AR (Autoregressive) process considers the past values of the time series for modelling. The first order AR (Autoregressive) model is represented by following Eq. $6.3$.
$$
R_{I}=\Phi_{l} R_{t-1}+\mathbf{u}{t} $$ Where $R{t}$ represents the present value of the variable at time $t$
$R_{t-1}$ represents the past value of the variable at time $t-1$
$\Phi_{t}$ represents the proportion at time $t$
$\mathrm{u}{t}$ represents the white noise error term The above Eq. (6.3) represents that the present value of the variable $(R)$ at time $(t)$ is equal to the some proportion $\left(\Phi{t}\right)$ of the past value of the variable $(R)$ at time $(t-1)$ plus the white noise error term $\left(\mathrm{u}{t}\right)$. Likewise, $\mathrm{nth}$ order AR (Autoregressive) process or $\mathrm{AR}(\mathrm{n})$ can be represented as Eq. (6.4). The $\mathrm{AR}(\mathrm{n})$ model as shown in $(6.4)$ includes only the current and previous values of the variable $R$. $$ R{t}=\Phi_{1} R_{t-1}+\Phi_{2} R_{t-2}+\ldots+\Phi_{n} R_{t-n}+\mathrm{u}_{t}
$$
Basic properties of the $\mathrm{AR}$ (Autoregressive) process are as follows:
- Mean of the $R_{t}$ for $\mathrm{AR}$ (1) model is zero
- Variance of $R_{t}$ for $\mathrm{AR}$ (1) model is represented by the Eq. (6.5)
$$
\frac{\sigma_{u}^{2}}{\left(1-\Phi_{1}^{2}\right)}
$$ - Covariance between $R_{t}$ and $R_{t-1}$ is represented by the Eq. (6.6)
$$
\frac{\Phi_{1} \sigma_{u}^{2}}{\left(1-\Phi_{1}^{2}\right)}
$$
Similarly for lag $(\mathrm{n})$ the expression is shown below
$$
\frac{\Phi_{1}^{n} \sigma_{u}^{2}}{\left(1-\Phi_{1}^{2}\right)}
$$
金融代写|金融计量经济学Financial Econometrics代考|ARCH & GARCH
The ARMA models are good in explaining the serial correlation but not efficient in capturing the conditional heteroskedasticity or volatility clustering. Thus, for forecasting the time series accurately, there is need for more sophisticated techniques. The ARCH (see Engle, 1982, 1983) and GARCH (see Bollerslev, 1986) techniques are used widely for modelling the volatility or volatility clustering of the time series. An ARCH model can be estimated from the best fitting autoregressive (AR) model using the OLS. Then perform the ARCH test to check whether ARCH effect is present in the residuals obtained from the autoregressive (AR) regression. The best fitting autoregressive (AR) model can be represented by the Eq. (6.13).
$$
Y_{I}=\alpha_{0}+\alpha_{1} Y_{t-1}+\alpha_{2} Y_{t-2}+\ldots+\alpha_{n} Y_{t-n}+\mathrm{u}{t} $$ Next, estimate the squares of the error term $\left(\hat{\mathrm{u}}{t}^{2}\right) \hat{\epsilon}^{2}$ by running a regression on the lagged value of the squares of the error term $\left(\hat{\mathrm{u}}{t}^{2}\right) \hat{\epsilon}^{2}$. $$ \hat{\mathbf{u}}{t}^{2}=\alpha_{0}+\sum_{i=1}^{p} \alpha_{i} \hat{\mathbf{u}}{t-i}^{2} u $$ In the above Eq. (6.14), $p$ represents the length of The ARCH lags. The null hypothesis of the $\mathrm{ARCH}$ test assumes that there is no $\mathrm{ARCH}$ effect present in the time series. The GARCH model considers the lagged conditional variance term in addition to the lagged value of the squares of the error term $\hat{\epsilon}^{2}$. The generalized GARCH $(p, q)$ model can be represented mathematically as shown in the Eq. (6.15). $$ \hat{\mathrm{u}}{t}^{2}=\alpha_{0}+\sum_{i=1}^{p} \alpha_{i} \hat{\mathrm{u}}{t-i}^{2}+\sum{i=1}^{q} \beta_{i} \sigma_{t-i}^{2}
$$
Where
P represents the lags length of the lagged value of the squares of the error term $\hat{\epsilon}^{2}$
$Q$ represents the lags length of the lagged conditional variance terms.
金融代写|金融计量经济学Financial Econometrics代考|VAR
The VAR stands for the “Vector Autoregressive”. The VAR models are introduced by Christopher A. Sim in the year 1960. VAR models are useful specially on dealing with the multivariate time series over time. The VAR model structure of a variable includes linear function of the lagged values of the variable and all other variables included in the VAR model. Let’s characterize a VAR model for examining the variations in the $\mathrm{X}$ and $\mathrm{Y}$ variables. Mathematically, the above VAR model can be represented as Eq. (6.16 and 6.17).
$$
\begin{aligned}
&X_{t}=\alpha_{1}+\sum_{i=1}^{p} \beta_{i} X_{t-i}+\sum_{i=1}^{p} \gamma_{i} Y_{t-i}+\mathrm{u}{1 t} \ &Y{t}=\alpha_{2}+\sum_{i=1}^{p} \theta_{i} X_{t-i}+\sum_{i=1}^{p} \lambda_{i} Y_{t-i}+\mathrm{u}_{2 t}
\end{aligned}
$$ The above two Eqs. (6.16 and 6.17) represent the VAR $(p)$ model. Where, $p$ represents the length of the lags. The VAR models assume that the variables are stationary. However, if the variables are not stationary but cointegrated, then VECM (Vector Error Correction Model) may be useful. The regression analysis expresses the dependency of one variable on the other. But it does not express the causality among the variables. The Granger Causality Test estimates provide detailed information on the causality among the variables. The VAR models are likewise useful to estimate the impulse response analysis and variance decomposition.
金融计量经济学代考
金融代写|金融计量经济学Financial Econometrics代考|ARIMA
时间序列的一个重要方面是时间序列数据通常用于预测。根据变量过去和现在的状态信息,预测变量的未来状态。ARIMA 模型由 Box-Jenkins 在 1976 年推出。ARIMA 代表“自动回归综合移动平均线”。此后,ARIMA 模型在金融领域广泛用于预测平稳时间序列。ARIMA 模型可用于对单变量和多变量时间序列进行建模。通常,使用以下方法生成时间序列:AR(自回归)或 MA(移动平均)或两者(ARMA)或 ARIMA 过程。
AR(自回归)过程
AR(自回归)过程考虑时间序列的过去值进行建模。一阶 AR(自回归)模型由以下等式表示。6.3.
R我=披lR吨−1+在吨在哪里R吨表示变量在时间的现值吨
R吨−1表示变量在某个时间的过去值吨−1
披吨表示当时的比例吨
在吨表示白噪声误差项 (6.3) 表示变量的现值(R)有时(吨)等于某个比例(披吨)变量的过去值(R)有时(吨−1)加上白噪声误差项(在吨). 同样地,n吨H订购 AR(自回归)过程或一个R(n)可以表示为等式。(6.4)。这一个R(n)模型如图所示(6.4)仅包括变量的当前值和先前值R.
R吨=披1R吨−1+披2R吨−2+…+披nR吨−n+在吨
基本属性一个R(自回归)过程如下:
- 的平均值R吨为了一个R(1) 模型为零
- 方差R吨为了一个R(1) 模型由方程式表示。(6.5)
σ在2(1−披12) - 之间的协方差R吨和R吨−1由方程式表示。(6.6)
披1σ在2(1−披12)
同样对于滞后(n)表达式如下所示
披1nσ在2(1−披12)
金融代写|金融计量经济学Financial Econometrics代考|ARCH & GARCH
ARMA 模型能很好地解释序列相关性,但不能有效地捕捉条件异方差或波动率聚类。因此,为了准确地预测时间序列,需要更复杂的技术。ARCH(参见 Engle, 1982, 1983)和 GARCH(参见 Bollerslev, 1986)技术被广泛用于时间序列的波动率或波动率聚类建模。可以使用 OLS 从最佳拟合自回归 (AR) 模型估计 ARCH 模型。然后执行 ARCH 测试以检查从自回归 (AR) 回归获得的残差中是否存在 ARCH 效应。最佳拟合自回归 (AR) 模型可以由方程式表示。(6.13)。
是我=一个0+一个1是吨−1+一个2是吨−2+…+一个n是吨−n+在吨接下来,估计误差项的平方(在^吨2)ε^2通过对误差项平方的滞后值进行回归(在^吨2)ε^2.
在^吨2=一个0+∑一世=1p一个一世在^吨−一世2在在上面的方程式中。(6.14),p表示 ARCH 滞后的长度。的零假设一个RCH测试假设没有一个RCH时间序列中存在的影响。GARCH 模型除了误差项平方的滞后值外,还考虑滞后条件方差项ε^2. 广义 GARCH(p,q)模型可以用数学方式表示,如方程式所示。(6.15)。
在^吨2=一个0+∑一世=1p一个一世在^吨−一世2+∑一世=1qb一世σ吨−一世2
其中
P 表示误差项平方的滞后值的滞后长度ε^2
问表示滞后条件方差项的滞后长度。
金融代写|金融计量经济学Financial Econometrics代考|VAR
VAR 代表“向量自回归”。VAR 模型由 Christopher A. Sim 在 1960 年引入。VAR 模型特别适用于处理随时间变化的多元时间序列。变量的 VAR 模型结构包括变量滞后值和 VAR 模型中包含的所有其他变量的线性函数。让我们描述一个 VAR 模型来检查X和是变量。在数学上,上述 VAR 模型可以表示为等式。(6.16 和 6.17)。
$$
\begin{aligned}
&X_{t}=\alpha_{1}+\sum_{i=1}^{p} \beta_{i} X_{ti}+\sum_{i=1}^{p} \gamma_{i} Y_{ti}+\mathrm{u} {1 t} \ &Y {t}=\alpha_{2}+\sum_{i=1}^{p} \theta_{i} X_{ti }+\sum_{i=1}^{p} \lambda_{i} Y_{ti}+\mathrm{u}_{2 t}
\end{aligned}
$$ 以上两个方程。(6.16 和 6.17) 代表 VAR(p)模型。在哪里,p表示滞后的长度。VAR 模型假设变量是平稳的。但是,如果变量不是平稳的而是协整的,那么 VECM(矢量误差校正模型)可能会很有用。回归分析表达了一个变量对另一个变量的依赖性。但它并没有表达变量之间的因果关系。格兰杰因果检验估计提供了变量间因果关系的详细信息。VAR 模型同样可用于估计脉冲响应分析和方差分解。
统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。
金融工程代写
金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。
非参数统计代写
非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。
广义线性模型代考
广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。
术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。
有限元方法代写
有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。
有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。
tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。
随机分析代写
随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
时间序列分析代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。
回归分析代写
多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。