### 金融代写|随机偏微分方程代写Stochastic partialApproximation

$$\partial_{t} u=\Delta u+\xi,$$

statistics-lab™ 为您的留学生涯保驾护航 在代写随机偏微分方程方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写随机偏微分方程代写方面经验极为丰富，各种代写随机偏微分方程相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 金融代写|随机偏微分方程代写Stochastic partial differential equations代考|Approximation

For a solution $u$ of (2.51) define
$$a(0)=\varepsilon^{-1} P_{c} u(0) \quad \text { and } \quad \psi(0)=\varepsilon^{-2} P_{s} u(0)$$
Now let $a$ be a solution of (2.45) with initial condition $a(0)$ and define $w$ and $\psi$ as in $(2.47)$ and $(2.46)$. Then we can show that $u(t) \approx \varepsilon w(t)$ in the following sense:
Theorem 2.6 (Approximation) Let Assumptions 2.1, 2.3, and 2.4 be true.
For $\delta_{1}, \delta_{2}>0, \tilde{\kappa} \in(0,1]$, and $T_{0}>0$ there is some $\eta>0$ and some constant $C>0$ such that for all solutions $u$ of $(2.51)$ and approximations a and $\psi$ defined by (2.59), (2.47), and (2.46) we have
\begin{aligned} &\mathbb{P}\left(\sup {t \in\left[0, T{0} e^{-2}\right]}|u(t)-\varepsilon w(t)| \leq C \varepsilon^{2-\tilde{\kappa}}\right) \ &\geq 1-2 \mathbb{P}\left(\left|P_{s} u(0)\right|>\delta_{2} \varepsilon^{2}\right)-2 \mathbb{P}\left(\left|P_{c} u(0)\right|>\delta_{1} \varepsilon\right)-C \varepsilon^{\eta} \end{aligned}
for all $\varepsilon \in(0,1)$.
The proof will be given in the next section. Let us first comment on the improvements of the result compared to older results.

Remark 2.5 In the proof we need $|a(t)|^{2}$ to be bounded uniformly in $t \in\left[0, T_{0}\right]$ by $\gamma \ln \left(\varepsilon^{-1}\right)$ for some small $\gamma>0(c f$. $(2.76))$. Hence, as we rely on Theorem B. 9 we cannot improve the result to large $\eta>0$ (cf. equation (2.79)). The main obstacle is that we can only bound certain exponential moments of $|a|^{2}$ and not of higher powers. Nevertheless, this is an improvement to the results of [Blö05a], where the probability was just small without any order in $\varepsilon$. In principle it is easy to thoroughly compute all constants, in order to provide a uniform lower bound on $\eta$ independent of other constants like $\delta_{j}, T_{0}$, and $\kappa$. But, as we expect the bound not to be large, for simplicity of presentation we do not focus on that.

Remark 2.6 For special types of nonlinearities we will see from the proof that it is possible to improve the result of Theorem $2.6$ significantly. We need information about the sign of certain multi-linear functionals. The first one is of the type $F_{1}\left(a, a, R_{c}, R_{c}\right)=\left\langle B_{c}\left(\psi, R_{c}\right), R_{c}\right\rangle$, while the second is given by $F_{2}\left(a, a, R_{c}, R_{c}\right)=$ $\left\langle B_{c}\left(a, R_{s}\right), R_{c}\right\rangle+”$ Error”. Recall that $\psi$ depends quadratically on a, and we will see later in the proof that $R_{s}$ is a function of $R_{c}$. Thus a statement of these results is quite technical, but sometimes easy to check for given $B$ and $L$. The improvement is that we can use standard a priori type estimates for (2.70) and (2.71), where all the critical terms responsible for the bad order in the proof of Theorem $2.6$ disappear.

## 金融代写|随机偏微分方程代写Stochastic partial differential equations代考|Proofs

This section gives the postponed proofs for Theorem 2.4, Lemma $2.2$, and Theorem 2.6. We first provide the proof of the attractivity result.

Proof. (of Theorem 2.4) The main ingredients of the proof are a cut-off technique and the linear stability of $L$. Fix some $\rho \in C^{\infty}(\mathbb{R})$ such that $\rho(x)=1$ for $x \leq 1$ and $\rho(x)=0$ for $x \geq 2$. Define for some small $\kappa>0$
$$A^{(\rho)}(u)=\rho\left(|u| \varepsilon^{-1+\kappa}\right) \cdot A u \quad \text { and } \quad B^{(\rho)}(u)=\rho\left(|u| \varepsilon^{-1+\kappa}\right) \cdot B(u) \text {. }$$
Moreover, define
$$u^{(\rho)}(0)=\left{\begin{array}{c} u(0): \text { for }|u(0)| \leq \delta \varepsilon \ 0: \text { otherwise } \end{array}\right.$$
Let $u^{(\rho)}$ be the solution of $(2.51)$ with $A^{(\rho)}$ and $B^{(\rho)}$ instead of $A$ and $B$ and initial condition $u^{(\rho)}(0)$. Thus,
\begin{aligned} u^{(\rho)}(t)=& \mathrm{e}^{t L} u^{(\rho)}(0)+\varepsilon \int_{0}^{t} \mathrm{e}^{(t-\tau) L} u^{(\rho)}(\tau) d \beta(\tau) \ &+\int_{0}^{t} \mathrm{e}^{(t-\tau) L}\left\varepsilon^{2} A^{(\rho)}\left(u^{(\rho)}\right)+B^{(\rho)}\left(u^{(\rho)}\right)\right d \tau . \end{aligned}
The existence of a unique solution $u^{(\rho)}$ is standard (cf. [DPZ92]), as we have global Lipschitz nonlinearities.
Define furthermore the stopping time
$$\tau_{\rho}=\left{\begin{array}{cc} \inf \left{t>0:\left|u^{(\rho)}(t)\right|>\varepsilon^{1-\kappa}\right} & : \text { for }|u(0)| \leq \delta \varepsilon \ 0 & : \text { otherwise. } \end{array}\right.$$
Obviously, $u(t)=u^{(\rho)}(t)$ for $0 \leq t \leq \tau_{\rho}$.

## 金融代写|随机偏微分方程代写Stochastic partial differential equations代考|Setting for Additive Noise

In this section, we follow partly the presentation in [BH05], which reviews results of [Blö03] and [BH04], which in turn are based on [BMPSO1]. The setting is exactly the one sketched in Section 1.2. We focus on an SPDE of the type (1.2) with mild

solutions given by (1.19). The additive noise $\varepsilon^{2} \xi$ in the equation is for instance motivated by the presence of thermal fluctuations in the medium. Therefore the strength $\varepsilon^{2}$ of the noise is supposed to be very small. We usually assume that the noise $\xi=\partial_{t} W$ is some generalised Gaussian process, which is given by the derivative of some $Q$-Wiener process. We comment on that in detail later after Assumption $2.8$.

In Section 2.5.1 we summarise the precise mathematical assumptions for (1.2). The main results for the approximation via amplitude equations are given in Section 2.5.3. This setting is also used in Section $3.1$ to approximate long-time behaviour in terms of invariant measures.

## 金融代写|随机偏微分方程代写Stochastic partial differential equations代考|Proofs

u^{(\rho)}(0)=\left{在(0): 为了 |在(0)|≤de 0: 除此以外 \对。 大号和吨在(ρ)b和吨H和s这l在吨一世这n这F(2.51)在一世吨H一种(ρ)一种nd乙(ρ)一世ns吨和一种d这F一种一种nd乙一种nd一世n一世吨一世一种lC这nd一世吨一世这n在(ρ)(0).吨H在s, \begin{aligned} u^{(\rho)}(t)=& \mathrm{e}^{t L} u^{(\rho)}(0)+\varepsilon \int_{0}^{t } \mathrm{e}^{(t-\tau) L} u^{(\rho)}(\tau) d \beta(\tau) \ &+\int_{0}^{t} \mathrm{ e}^{(t-\tau) L}\left \varepsilon^{2} A^{(\rho)}\left(u^{(\rho)}\right)+B^{(\rho) }\left(u^{(\rho)}\right)\right d \tau 。 \end{对齐} 吨H和和X一世s吨和nC和这F一种在n一世q在和s这l在吨一世这n在(ρ)一世ss吨一种nd一种rd(CF.[D磷从92]),一种s在和H一种在和Gl这b一种l大号一世psCH一世吨和n这nl一世n和一种r一世吨一世和s.D和F一世n和F在r吨H和r米这r和吨H和s吨这pp一世nG吨一世米和 \tau_{\rho}=\左{\begin{array}{cc} \inf \left{t>0:\left|u^{(\rho)}(t)\right|>\varepsilon^{1-\kappa}\right} & : \文本 { }|u(0)| \leq \delta \varepsilon \ 0 & : \text { 否则。} \结束{数组}\begin{array}{cc} \inf \left{t>0:\left|u^{(\rho)}(t)\right|>\varepsilon^{1-\kappa}\right} & : \文本 { }|u(0)| \leq \delta \varepsilon \ 0 & : \text { 否则。} \结束{数组}\对。

## 金融代写|随机偏微分方程代写Stochastic partial differential equations代考|Setting for Additive Noise

(1.19) 给出的解。附加噪声e2X例如，在等式中是由介质中存在的热波动引起的。因此实力e2的噪音应该很小。我们通常假设噪声X=∂吨在是一些广义的高斯过程，由一些的导数给出问-维纳过程。我们稍后会在假设之后对此进行详细评论2.8.

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。